DOI QR코드

DOI QR Code

The Optimal Signal Intensity according to Image Scale Reset of MRI

자기공명영상의 image scale 재설정에 따른 최적의 영상신호 표준화

  • 이호범 (서울아산병원 영상의학과) ;
  • 최관우 (서울아산병원 영상의학과) ;
  • 손순룡 (원광보건대학교 방사선과)
  • Received : 2017.08.28
  • Accepted : 2017.09.18
  • Published : 2017.12.28

Abstract

In this study, we tried to improve the reproducibility of signal intensity by applying DOTS method. The study was conducted on 30 patients who had undergone hepatic screening because of poor reproducibility and decreased signal intensity. The images were acquired before and after injection of contrast media and then post-processed by DOTS methods. Signal intensity was compared and evaluated. The results showed that the signal intensity of the images was 183.3% ($1038.0{\pm}70.7$ before application, $2940.7{\pm}179.6$ after application) and 1118.4% ($444.1{\pm}92.4$, $5410.5{\pm}168.4$ after application). This is a significant improvement in the fact that the reproducibility of MRI) was changed by the DOTS method, which is a post-processing method.

Keywords

Reproducibility;Image Scale;DOTS;MRI;Signal Intensity

Acknowledgement

Supported by : 원광보건대학교

References

  1. A. R. Padhani, G. Liu, D. M. Koh, T. L. Chenevert, H. C. Thoeny, T. Takahara, A. Dzik Jurasz, B. D. Ross, M. V. Cauteren, D. Collins, D. A. Hammoud, G. J. S. Rustin, B. Taouli, and P. L. Choyke, "Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations," Neoplasia, Vol.11, No.2, pp.102-125, 2009. https://doi.org/10.1593/neo.81328
  2. V. P. Grover, J. M. Tognarelli, M. M. Crossey, I. J. Cox, S. D. Taylot-Robinson, and M. J. McPhail, "Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians," J Clin Exp Hepatol, Vol.5, No.3, pp.246-255, 2015. https://doi.org/10.1016/j.jceh.2015.08.001
  3. B. F. Kurland, E. R. Gerstner, J. M. Mountz, L. H. Schwartz, C. W. Ryan, M. M. Graham, J. M. Buatti, F. M. Fennessy, E. A. Eikman, V. Kumar, K. M. Forsterh, R. L. WahliFrank, and S. Liebermanc, "Promise and pitfalls of quantitative imaging in oncology clinical trials," Magn Reson Imaging, Vol.30, No.9, pp.1301-1312, 2012. https://doi.org/10.1016/j.mri.2012.06.009
  4. M. Wels, Y. Zheng, M. Huber, J. Hornegger, and D. Comaniciu, "A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction," Physics in medicine and biology, Vol.56, No.11, p.3269, 2011. https://doi.org/10.1088/0031-9155/56/11/007
  5. J. M. Wang, Q. H. Kim, and R. T. Constable, "T1 measurements incorporating flip angle calibration and correction in vivo," J Magn Reson, Vol.182, No.2, pp.283-292, 2006. https://doi.org/10.1016/j.jmr.2006.07.005
  6. P. Mildenberger, M. Eichelberg, and E. Martin, "Introduction to the DICOM standard," Eur Radiol, Vol.12, No.4, pp.920-927, 2002. https://doi.org/10.1007/s003300101100
  7. B. Belaroussi, J. Milles, S. Carme, Y. M. Zhu, and H. Benoit-Cattin, "Intensity non-uniformity correction in MRI: existing methods and their validation," Med Image Anal, Vol.10, No.2, pp.234-246, 2006. https://doi.org/10.1016/j.media.2005.09.004
  8. R. G. Boyes, J. L. Gunter, C. Frost, A. L. Janke, T. Yeatman, D. L. Hill, M. A. Bernstein, P. M. Thompson, M. W. Weiner, N. Schuff, G. E. Alexanderi, R. J. Killianyj, C. D. Carlik, C. R.J ackb, and N. C. Foxa, "Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils," Neuroimage, Vol.39, No.4, pp.1752-1762, 2008. https://doi.org/10.1016/j.neuroimage.2007.10.026
  9. M. Gutberlet, R. Noeske, K. Schwinge, P. Freyhardt, R. Felix, and T. Niendorf, "Comprehensive cardiac magnetic resonance imaging at 3.0 tesla: feasibility and implications for clinical applications," Invest Radiol, Vol.41, No.2, pp.154-167, 2006. https://doi.org/10.1097/01.rli.0000195840.50230.10
  10. T. L. Chenevert, D. I. Malyarenko, D. Newitt, X. Li, M. Jayatilake, A. Tudorica, and M. J. Oborski, "Errors in quantitative image analysis due to platform-dependent image scaling," Translational oncology, Vol.7, No.1, pp.65-71, 2014. https://doi.org/10.1593/tlo.13811
  11. P. A. Rinck and R. N. Muller, "Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents," Eur Radiol, Vol.9, No.5, pp.998-1004, 1999. https://doi.org/10.1007/s003300050781
  12. O. Dietrich, J. G. Raya, S. B. Reeder, M. Ingrisch, M. F. Reiser, and S. O. Schoenberg, "Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics," Magnetic resonance imaging, Vol.26, No.6, pp.754-762, 2008. https://doi.org/10.1016/j.mri.2008.02.001
  13. D. A. Clunie, "DICOM structured reporting and cancer clinical trials results," Cancer Inform, Vol.4, pp.33-56, 2007.
  14. B. D. Klumpp, J. Sandstede, K. P. Lodemann, A. Seeger, T. Hoevelborn, M. Fenchel, U. Kramer, C. D. Claussen, and S. Miller, "Intraindividual comparison of myocardial delayed enhancement MR imagion using gadobenate dimeglumine at 1.5T and 3T," European Radiology, Vol.19, No.5, pp.1124-1131, 2009. https://doi.org/10.1007/s00330-008-1248-7
  15. C. H. Lim, S. J. Bae, "3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle," Radiologic Technology Proceedings of Korea, Vol.32, pp.177-182, 2009.