Implementation and Comparison of Controllers for Planar Robots

  • Kern, John (Automation Group, Department of Electrical Engineering, University of Santiago of Chile) ;
  • Urrea, Claudio (Automation Group, Department of Electrical Engineering, University of Santiago of Chile) ;
  • Torres, Hugo (School of Electronics, University of Azuay)
  • Received : 2015.11.11
  • Accepted : 2016.11.29
  • Published : 2017.03.01


The nonlinear behavior and the high performance requirement are the main problems that appear in the design of manipulator robots and their controllers. For that reason, the simulation, real-time execution and comparison of the performance of controllers applied to a robot with three degrees of freedom are presented. Five controllers are prepared to test the robot's dynamic model: predictive; hyperbolic sine-cosine; sliding mode; hybrid composed of a predictive + hyperbolic sine-cosine controller; and adaptive controller. A redundant robot, a communication and signal conditioning interface, and a simulator are developed by means of the MatLab/Simulink software, which allows analyzing the dynamic performance of the robot and of the designed controllers. The manipulator robot is made to follow a test trajectory which, thanks to the proposed controllers, it can do. The results of the performance of this manipulator and of its controllers, for each of the three joints, are compared by means of RMS indices, considering joint errors according to the imposed trajectory and to the controller used.


  1. M. Ebad and B. M. Song, "Accurate Model Predictive Control of Bidirectional DC-DC Converters for DC Distributed Power Systems," Power and Energy Society General Meeting IEEE, pp. 1-8, 2012.
  2. J. Mu and D. Rees, "Approximate Model Predictive Control for Gas Turbine Engines," American Control Conference IEEE, vol. 6, pp. 5704-5709, 2004.
  3. M. Farrokhsiar and H. Najjaran, "Unscented Model Predictive Control of Chance Constrained Nonlinear Systems," Advanced Robotics, vol. 28, no. 4, pp. 257-267, 2014.
  4. E. Camacho and C. Bordons, "Control Predictivo: Pasado, Presente y Futuro," Revista Iberoamericana de Automatica e Informatica Industrial, vol. 1, no. 3, pp. 5-28, 2004.
  5. G. I. Suarez, O. A. Ortiz, P. M. Aballay and N. H. Aros, "Adaptive Neural Model Predictive Control for the Grape Juice Concentration Process," Industrial Technology. IEEE, pp. 57-63, 2010.
  6. M. Kinnaert, "Adaptive Generalized Predictive Controller for MIMO Systems," International Journal of Control, vol. 50, no. 1, pp. 161-172, 1989.
  7. A. Dutta, R. De Keyser and I. Nopens, "Robust Nonlinear Extended Prediction Self-Adaptive Control (NEPSAC) of Continuous Bioreactors," Control & Automation IEEE, pp. 658-664, 2012.
  8. M. Moradi and H. Malekizade, "Neural Network Identification Based Multivariable Feedback Linearization Robust Control for a Two-Link Manipulator," Journal of Intelligent & Robotic Systems, vol. 72, no. 2, pp. 167-178, Nov.2013.
  9. P. Boscariol, A. Gasparetto, and V. Zanotto, "Model Predictive Control of a Flexible Links Mechanism," Journal of Intelligent and Robotic Systems, vol. 58, no. 2, pp. 125-147, 2010.
  10. D. M. Anand, T. Selvaraj and S. Kumanan, "Fault Detection and Isolation in Robotic Manipulator Via Hybrid Neural Networks," International Journal of Simulation Modelling, vol. 7, no. 1, pp. 5-16, 2008.
  11. L. Acosta, S. Torres, J. Mendez, N. Marichal, A. Hamilton and L. Moreno, "Control Predictivo Mediante Interpolacion Aplicado a un Robot Manipulador de Dos Articulaciones," Grupo de Computadoras y Control, Departamento de Fisica Fundamental y Experimenta, 2000.
  12. K. Prema, N. Senthil Kumar and Subhransu Sekhar Dash, "Online Control of DC Motors Using Fuzzy Logic Controller for Remote Operated Robots," Journal Electrical Engineering & Technology, vol. 9, no. 1, pp. 352-362, 2014.
  13. M. Rau and D. Schroder, "Model Predictive Control with Nonlinear State Space Models," Advanced Motion Control IEEE, pp. 136-141, 2002.
  14. L. Orihuela, T. alamo, D. Munoz and F. Rubio, "Algoritmo de Minimizacion para Control Predictivo con Restricciones," XXIX Jornadas de Automatica, Departamento de Ingenieria de Sistemas y Automatica, Universidad de Sevilla, Tarragona, Spain, 2008.
  15. M. De la Fuente and T. Calonge, "Aplicaciones de las Redes de Neuronas en Supervision," Diagnosis y Control de Procesos. Editorial Texto, Equinoccio, Venezuela, 1999.
  16. Kern, J. "Analisis e Implementacion de Sistemas de Control Tolerantes a Fallas Aplicados en un Robot de Tipo Manipulador Industrial Real". Master Thesis. Universidad de Santiago de Chile, Sep. 2010.
  17. C. Urrea and J. Kern, "Modeling, Simulation and Control of a Redundant SCARA-Type Manipulator Robot," International Journal of Advanced Robotic Systems, vol. 9, no. 58, pp. 01-14, 2012.
  18. A. Boucheta, I. K. Bousserhane, A. Hazzab, P. Sicard and M. K. Fellah, "Speed Control of Linear Induction Motor using Sliding Mode Controller Considering the End Effects," Journal of Electrical Engineering & Technology vol. 7, no. 1, pp. 34-45, 2012.
  19. K. Braikia, M. Chettouh, B. Tondu, P. Acco, and M. Hamerlain, "Improved Control Strategy of 2-Sliding Controls Applied to a Flexible Robot Arm," Advanced Robotics, vol. 25, no. 11-12, pp. 1515-1538, 2011.
  20. G. Bartolini, A. Ferrara and E. Usani, "Chattering Avoidance by Second-Order Sliding Mode Control," Automatic control, IEEE, vol. 43, no. 2, pp. 241-246, 1998.
  21. J. Vojtesek and P. Dostal, "Simulation of Adaptive Control of Continuous Stirred Tank Reactor," International Journal of Simulation Modelling, vol. 8, no. 3, 133-144, 2009.