• Received : 2015.12.26
  • Published : 2017.01.31


The main objective of this paper is to establish certain unified integral formula involving the product of the generalized Mittag-Leffler type function $E^{({\gamma}_j),(l_j)}_{({\rho}_j),{\lambda}}[z_1,{\ldots},z_r]$ and the Srivastava's polynomials $S^m_n[x]$. We also show how the main result here is general by demonstrating some interesting special cases.


  1. R. P. Agarwal, A propos d'une note de M. Pierre Humbert, C. R. Acad. Sci. Paris 236 (1953), 2031-2032.
  2. M. M. Dzherbashyan, Integral Transforms and Representations of Functions in the Complex Plane, Nauka, Moscow, 1966 (in Russian).
  3. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vol. III, Based, in part, on notes left by Harry Bateman. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955
  4. S. Gautam, Investigations in Fractional Differential Operators of Arbitrary Order and their Applications to Special Functions of One and Several Variables, Ph. D. Thesis, University of Kota, Kota, India, 2008.
  5. P. Humbert, Quelques resultants retifs a la fonction de Mittag-Leffler, C. R. Acad. Sci. Paris 236 (1953), 1467-1468.
  6. P. Humbert and R. P. Agarwal, Sur la fonction de Mittag-Leffler et quelques-unes de ses g]'eneralisations, Bull. Sci. Math. (2) 77 (1953), 180-185.
  7. R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  8. B. B. Jaimini and J. Gupta, On certain fractional differential equations involving generalized multivariable Mittag-Leffler function, Note Mat. 32 (2012), no. 2, 141-456.
  9. S. Kumar, D. Kumar, S. Abbasbandy, and M. M. Rashidi, Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method, Ain Shams Engineering J., (in press).
  10. K. R. Lang, Astrophysical Formulae. Vol. 1: Radiation, Gas Processes and High-Energy Astrophysics, 3rd edition, revised edition, Springer-Verlag, New York, 1999.
  11. K. R. Lang, Astrophysical Formulae. Vol. 2: Space, Time, Matter and Cosmology, Springer-Verlag, New York, 1999.
  12. G. M. Mittag-Leffler, Une generalisation de l'integrale de Laplace-Abel, C. R. Acad. Sci. Paris (Ser. II) 137 (1903), 537-539.
  13. G. M. Mittag-Leffler, Sur la representation analytique d'une branche uniforme d'une fonction monogene, cinquieme note, Acta Math. 29 (1905), no. 1, 101-181.
  14. T. R. Prabhakar, A Singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15.
  15. E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
  16. R. K. Saxena, S. L. Kalla, and R. Saxena, Multivariable analogue of generalized Mittag-Leffler function, Integral Transforms Spec. Funct. 22 (2011), no. 7, 533-548.
  17. R. K. Saxena, A. M. Mathai, and H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci. 282 (2002), 281-287.
  18. A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007), no. 2, 797-811.
  19. D. K. Singh and R. Rawat, Integrals involving generalized Mittag-Leffler function, J. Fract. Calc. Appl. 4 (2013), no. 2, 234-244.
  20. H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math. 14 (1972), 1-6.
  21. H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  22. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric Series, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985.
  23. H. M. Srivastava and N. P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo (2) 32 (1983), no. 2, 157-187.
  24. H. M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211 (2009), no. 1, 198-210.
  25. A. Wiman, Uber den fundamental satz in der theorie der funcktionen, $E_{\alpha}(x)$, Acta Math. 29 (1905), no. 1, 191-201.
  26. A. M. Yang, Y. Z. Zhang, C. Cattani, G. N. Xie, M. M. Rashidi, Y. J. Zhou, and X. J. Yang, Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets, Abstr. Appl. Anal. (in press).

Cited by

  1. Fractional integral operators involving extended Mittag–Leffler function as its Kernel 2017,