DOI QR코드

DOI QR Code

Protective Effect of Perilla frutescens Extract against Oxidative Stress-Induced Cell Death in a Staurosporine-Differentiated Retinal Ganglion Cell Line

Staurosporine에 의해 분화된 망막신경절세포에서 산화 스트레스 유도 세포사멸에 대한 차조기 추출물의 보호 효능

  • Received : 2016.11.10
  • Accepted : 2017.01.23
  • Published : 2017.02.28

Abstract

In this study, we examined the effect of Perilla frutescens extract (PFE) on oxidative stress-induced cell death in RGC-5 cell lines. Staurosporine-differentiated RGC-5 (ssdRGC-5) cells obtained by treating RGC-5 cells with $1{\mu}M$ staurosporine were incubated with PFE for 30 min and then exposed to buthionine sulfoximine plus glutamate (B/G) for 20 h. Cell death was detected using lactate dehydrogenase release assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. To investigate the mechanism underlying cell death, we determined caspase-3 activity, level of reactive oxygen species (ROS) formation, and expression levels of cytoplasmic cytochrome c and mitochondrial Bax. Treatment of ssdRGC-5 cells with B/G increased intracellular ROS and induced apoptosis with increasing caspase-3 activity. PFE rescued ssdRGC-5 cells from oxidative stress-induced cell death by inhibiting intracellular ROS production and caspase-3 activation and regulating apoptosis-related proteins such as cytochrome c and Bax. These findings suggest that PFE may have a beneficial neuroprotective effect against oxidative stress-induced apoptotic death in ssdRGC-5 cells.

Acknowledgement

Supported by : 한국보건산업진흥원, 중소기업청

References

  1. Voleti VB, Hubschman JP. 2013. Age-related eye disease. Maturitas 75: 29-33. https://doi.org/10.1016/j.maturitas.2013.01.018
  2. Patino CM, McKean-Cowdin R, Azen SP, Allison JC, Choudhury F, Varma R; Los Angeles Latino Eye Study Group. 2010. Central and peripheral visual impairment and the risk of falls and falls with injury. Ophthalmology 117: 199-206. https://doi.org/10.1016/j.ophtha.2009.06.063
  3. Knudtson MD, Klein BE, Klein R. 2006. Age-related eye disease, visual impairment, and survival: the Beaver Dam Eye Study. Arch Ophthalmol 124: 243-249. https://doi.org/10.1001/archopht.124.2.243
  4. Crish SD, Calkins DJ. 2011. Neurodegeneration in glaucoma: progression and calcium-dependent intracellular mechanisms. Neuroscience 176: 1-11. https://doi.org/10.1016/j.neuroscience.2010.12.036
  5. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. 2012. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 31: 152-181. https://doi.org/10.1016/j.preteyeres.2011.11.002
  6. Chrysostomou V, Rezania F, Trounce IA, Crowston JG. 2013. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol 13: 12-15. https://doi.org/10.1016/j.coph.2012.09.008
  7. Izzotti A, Bagnis A, Sacca SC. 2006. The role of oxidative stress in glaucoma. Mutat Res 612: 105-114. https://doi.org/10.1016/j.mrrev.2005.11.001
  8. Liu J, Steigel A, Reininger E, Bauer R. 2000. Two new prenylated 3-benzoxepin derivatives as cyclooxygenase inhibitors from Perilla frutescens var. acuta. J Nat Prod 63: 403-405. https://doi.org/10.1021/np990362o
  9. Makino T, Furuta Y, Wakushima H, Fujii H, Saito K, Kano Y. 2003. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother Res 17: 240-243. https://doi.org/10.1002/ptr.1115
  10. Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa J, Nishino H. 2004. Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects. Biosci Biotechnol Biochem 68: 85-90. https://doi.org/10.1271/bbb.68.85
  11. Son HU, Heo JC, Seo MS, Lee SH. 2010. Effects on Perilla frutescens L. on anti-oxidant and anti-inflammation activity. Korean J Food Preserv 17: 757-761.
  12. Oh HA, Park CS, Ahn HJ, Park YS, Kim HM. 2011. Effect of Perilla frutescens var. acuta Kudo and rosmarinic acid on allergic inflammatory reactions. Exp Biol Med 236: 99-106. https://doi.org/10.1258/ebm.2010.010252
  13. Lim HJ, Woo KW, Lee KR, Lee SK, Kim HP. 2014. Inhibition of proinflammatory cytokine generation in lung inflammation by the leaves of Perilla frutescens and its constituents. Biomol Ther 22: 62-67. https://doi.org/10.4062/biomolther.2013.088
  14. Nakazawa T, Yasuda T, Ueda J, Ohsawa K. 2003. Antidepressant-like effects of apigenin and 2,4,5-trimethoxycinnamic acid from Perilla frutescens in the forced swimming test. Biol Pharm Bull 26: 474-480. https://doi.org/10.1248/bpb.26.474
  15. He YK, Yao YY, Chang YN. 2015. Characterization of anthocyanins in Perilla frutescens var. acuta extract by advanced UPLC-ESI-IT-TOF-MSn method and their anticancer bioactivity. Molecules 20: 9155-9169. https://doi.org/10.3390/molecules20059155
  16. Kim MH, Lee NH, Lee MH, Kwon DJ, Choi UK. 2007. Antimicrobial activity of aqueous ethanol extracts of Perilla frutescens var. acuta leaf. Korean J Food Cult 22: 266-273.
  17. Kim DH, Kim YC, Choi UK. 2011. Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against Staphylococcus aureus using evolutionary operation factorial design technique. Int J Mol Sci 12: 2395-2407. https://doi.org/10.3390/ijms12042395
  18. Lee CW, Choi HM, Kim SY, Lee JR, Kim HJ, Jo C, Jung S. 2015. Influence of Perilla frutescens var. acuta water extract on the shelf life and physicochemical qualities of cooked beef patties. Korean J Food Sci An 35: 389-397. https://doi.org/10.5851/kosfa.2015.35.3.389
  19. Choi SH, Hur JM, Yang EJ, Jun M, Park HJ, Lee KB, Moon E, Song KS. 2008. $\beta$-Secretase (BACE1) inhibitors from Perilla frutescens var. acuta. Arch Pharm Res 31: 183-187. https://doi.org/10.1007/s12272-001-1139-9
  20. Kim MH, Kang WW, Lee NH, Kwoen DJ, Choi UK. 2007. Antioxidant activities of extract with water and ethanol of Perilla frutescens var. acuta kudo leaf. J Korean Soc Appl Biol Chem 50: 327-333.
  21. Hong EY, Park KH, Kim GH. 2010. Phenolic-enriched fractions from Perilla frutescens var. acuta: determinating rosmarinic acid and antioxidant activity. J Food Biochem 35: 1637-1645.
  22. Jun HI, Kim BT, Song GS, Kim YS. 2013. Structural characterization of phenolic antioxidants from purple perilla (Perilla frutescens var. acuta) leaves. Food Chem 148: 367-372.
  23. Jeong KI, Ryu GC. 2016. An effect of extract of Perilla frutescens Britton var. acuta Kudo on changes in refractive error. Kor J Vis Sci 18: 167-174. https://doi.org/10.17337/JMBI.2016.18.2.167
  24. Yang H, Lee BK, Kook KH, Jung YS, Ahn J. 2012. Protective effect of grape seed extract against oxidative stress-induced cell death in a staurosporine-differentiated retinal ganglion cell line. Curr Eye Res 37: 339-344. https://doi.org/10.3109/02713683.2011.645106
  25. Lee BK, Jung YS. 2016. Allium cepa extract and quercetin protect neuronal cells from oxidative stress via PKC-${\varepsilon}$ inactivation/ERK1/2 activation. Oxid Med Cell Longev 2016: 2495624.
  26. Lee BK, Lee S, Yi KY, Yoo SE, Jung YS. 2011. KR-33028, a novel $Na^{+}/H^{+}$ exchanger-1 inhibitor, attenuates glutamateinduced apoptotic cell death through maintaining mitochondrial function. Biomol Ther 19: 445-450. https://doi.org/10.4062/biomolther.2011.19.4.445
  27. Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K, Kobayashi S, Ishida S, Tsubota K. 2010. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia 53: 971-979. https://doi.org/10.1007/s00125-009-1655-6
  28. Maher P, Hanneken A. 2004. The molecular basis of oxidative stress-induced cell death in an immortalized retinal ganglion cell line. Invest Ophthalmol Vis Sci 46: 749-757.
  29. Frassetto LJ, Schlieve CR, Lieven CJ, Utter AA, Jones MV, Agarwal N, Levin LA. 2006. Kinase-dependent differentiation of a retinal ganglion cell precursor. Invest Ophthalmol Vis Sci 47: 427-438. https://doi.org/10.1167/iovs.05-0340
  30. Tezel G. 2006. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25: 490-513. https://doi.org/10.1016/j.preteyeres.2006.07.003
  31. Osborne NN, del Olmo-Aguado S. 2013. Maintenance of retinal ganglion cell mitochondrial functions as a neuroprotective strategy in glaucoma. Curr Opin Pharmacol 13: 16-22. https://doi.org/10.1016/j.coph.2012.09.002
  32. Griffith OW. 1982. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 257: 13704-13712.
  33. Osborne NN, Ji D, Majid AS, Del Soldata P, Sparatore A. 2012. Glutamate oxidative injury to RGC-5 cells in culture is necrostatin sensitive and blunted by a hydrogen sulfide (H2S)-releasing derivative of aspirin (ACS14). Neurochem Int 60: 365-378. https://doi.org/10.1016/j.neuint.2012.01.015
  34. Klein JA, Ackerman SL. 2003. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111: 785-793. https://doi.org/10.1172/JCI200318182
  35. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. 2007. Mitochondria, oxidative stress and cell death. Apoptosis 12: 913-922. https://doi.org/10.1007/s10495-007-0756-2
  36. Franklin JL. 2011. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14: 1437-1448. https://doi.org/10.1089/ars.2010.3596
  37. Asif M. 2012. Phytochemical study of polyphenols in Perilla frutescens as an antioxidant. Avic J Phytomed 2: 169-178.
  38. Meng L, Lozano YF, Gaydou EM, Li B. 2009. Antioxidant activities of polyphenols extracted from Perilla frutescens varieties. Molecules 14: 133-140.
  39. Friedman T. 2015. The effect of rosmarinic acid on immunological and neurological system: A basic science and clinical review. J Resto Med 4: 50-59. https://doi.org/10.14200/jrm.2015.4.0105
  40. Nakamura Y, Ohto Y, Murakami A, Ohigashi H. 1998. Superoxide scavenging activity of rosmarinic acid from Perilla frutescens Britton var. acuta f. viridis. J Agric Food Chem 46: 4545-4550. https://doi.org/10.1021/jf980557m
  41. Lee HJ, Cho HS, Park E, Kim S, Lee SY, Kim CS, Kim DK, Kim SJ, Chun HS. 2008. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology 250: 109-115. https://doi.org/10.1016/j.tox.2008.06.010
  42. Maher P, Hanneken A. 2005. Flavonoids protect retinal ganglion cells from oxidative stress-induced death. Invest Ophthalmol Vis Sci 46: 4796-4803. https://doi.org/10.1167/iovs.05-0397