DOI QR코드

DOI QR Code

Contents Recommendation Scheme Considering User Activity in Social Network Environments

소셜 네트워크 환경에서 사용자 행위를 고려한 콘텐츠 추천 기법

  • 고건식 (충북대학교 빅데이터학과) ;
  • 김병훈 (충북대학교 빅데이터학과) ;
  • 김대윤 (충북대학교 빅데이터학과) ;
  • 최민웅 (충북대학교 빅데이터학과) ;
  • 임종태 (충북대학교 정보통신공학과) ;
  • 복경수 (충북대학교 정보통신공학과) ;
  • 유재수 (충북대학교 정보통신공학과)
  • Received : 2016.10.24
  • Accepted : 2016.11.21
  • Published : 2017.02.28

Abstract

With the development of smartphones and online social networks, users produce a lot of contents and share them with each other. Therefore, users spend time by viewing or receiving the contents they do not want. In order to solve such problems, schemes for recommending useful contents have been actively studied. In this paper, we propose a contents recommendation scheme using collaborative filtering for users on online social networks. The proposed scheme consider a user trust in order to remove user data that lower the accuracy of recommendation. The user trust is derived by analyzing the user activity of online social network. For evaluating the user trust from various points of view, we collect user activities that have not been used in conventional techniques. It is shown through performance evaluation that the proposed scheme outperforms the existing scheme.

Keywords

Online Social Network;User Activity;User Trust;Content Recommendation

Acknowledgement

Supported by : 정보통신기술진흥센터, 한국연구재단

References

  1. 나종연, "사용확산모형을 적용한 소비자의 온라인 소셜 네트워크 활용에 대한 연구," 소비자학연구, 제21권, 제2호, pp.443-472, 2010.
  2. https://www.twitter.com/
  3. https://ko-kr.facebook.com/
  4. https://www.watcha.net/
  5. 고상민, 황보환, 지용구, "소셜네트워크서비스와 온라인 사회적 자본- 한국과 중국 사례를 중심으로- 페이스북 이용을 중심으로," 한국전자거래학회지, 제15권, 제1호, pp.103-118, 2010.
  6. 김유정, "소셜네트워크서비스에 대한 이용과 충족 연구," 미디어, 젠더 & 문화, 제20호, pp.71-105, 2011.
  7. 송창우, 김종훈, 정경용, 류중경, 이정현, "시맨틱 웹에서 개인화 프로파일을 이용한 콘텐츠 추천 검색 시스템," 한국콘텐츠학회논문지, 제8권, 제1호, pp.318-327, 2008.
  8. L. Iaquinta, M. de Gemmis, P. Lops, G. Semeraro, M. Filannino, and P. Molino, "Introducing serendipity in a content-based recommender system," Proc. International Conference on Hybrid Intelligent Systems, pp.168-173, 2008.
  9. M. HAHSLER, "recommenderlab: A Framework for Developing and Testing Recommendation Algorithms," 2011.
  10. A. Javari and M. Jalili, "Cluster-based collaborative filtering for sign prediction in social networks with positive and negative links," ACM Transactions on Intelligent Systems and Technology, Vol.5, No.2, p.24, 2014
  11. S. Gong, "A collaborative filtering recommendation algorithm based on user clustering and item clustering," Journal of Software, Vol.5, No.7, pp.745-752, 2010.
  12. P. Moradi and S. Ahmadian, "A reliability-based recommendation method to improve trust-aware recommender systems," Expert Systems with Applications, Vol.42, No.21, pp.7386-7398, 2015. https://doi.org/10.1016/j.eswa.2015.05.027
  13. D. H. Alahmadi and X. Zeng, "ISTS: Implicit social trust and sentiment based approach to recommender systems," Expert Systems with Applications, Vol.42, No.22, pp.8840-8849, 2015. https://doi.org/10.1016/j.eswa.2015.07.036
  14. W. Hwang, H. Lee, S. Kim, Y. Won, and M. Lee, "Efficient recommendation methods using category experts for a large dataset," Information Fusion, Vol.28, pp.75-82, 2016. https://doi.org/10.1016/j.inffus.2015.07.005
  15. 노연우, 김대윤, 한지은, 육미선, 임종태, 복경수, 유재수, "소셜 네트워크에서 사용자의 영향력을 고려한 핫 토픽 예측 기법," 한국콘텐츠학회논문지, 제15권, 제8호, pp.24-36, 2015.