DOI QR코드

DOI QR Code

Fluorescence-labelling for analysis of protein in starch using asymmetrical flow field-flow fractionation (AF4)

  • Yoo, Yeongsuk ;
  • Choi, Jaeyeong ;
  • Zielke, Claudia ;
  • Nilsson, Lars ;
  • Lee, Seungho
  • Received : 2017.01.05
  • Accepted : 2017.02.08
  • Published : 2017.02.25

Abstract

Starch is a mixture of amylose (AMY) and amylopectin (AMP) which are different in physical properties such as molar mass (M), rms radius ($R_g$) and hydrodynamic diameter ($d_H$). The rheological and functional properties of starch are influenced by various factors including the molecular size, molar mass distribution (MD) and the concentration ratio of AMY and AMP. It is also important to analyze proteinaceous material in starch as they affect the flavor and texture of food to which starch is added. In this study, asymmetrical flow field-flow fractionation (AF4) was employed for separation and quantitation of AMY and AMP in starches (Amaranth, potato, taros and quinoa). AF4 was coupled with a multi-angle light scattering (MALS) and a refractive index (RI) detector for determination of the absolute M, MD and molecular structure. It was found that AMP has the M and $R_g$ ranging $3.7{\times}10^7{\sim}6.5{\times}10^8g/mol$ and 84 ~ 250 nm, respectively. Also the existence of branch was confirmed in higher M. In addition, proteinaceous material in starch was analyzed by AF4 coupled with a fluorescence detector (FS) after fluorescence-labeling. AF4-FS with fluorescence-labelling showed a potential for investigation on existence of proteinaceous material and the interaction between proteinaceous material and polysaccharide in starch.

Keywords

Asymmetrical flow field-flow fractionation (AF4);Starch;Amylose;Amylopectin;Fluorescence labeling;Proteinaceous materials

References

  1. K. G. Wahlund, M. Leeman, and S. Santacruz, Anal. Bioanal. Chem., 399(4), 1455-1465 (2011). https://doi.org/10.1007/s00216-010-4438-5
  2. E. Chiaramonte, L. Rhazi, T. Aussenac, and D. R. White, J. Cereal Sci., 56(2), 457-463 (2012). https://doi.org/10.1016/j.jcs.2012.04.006
  3. N. Lindeboom, P. R. Chang, and R. T. Tyler, Starch/ Staerke, 56(3-4), 89-99 (2004). https://doi.org/10.1002/star.200300218
  4. L. Nilsson, Food Hydrocoll., 30(1), 1-11 (2013). https://doi.org/10.1016/j.foodhyd.2012.04.007
  5. A. Kilara and T. Y. Sharkasi, Crit. Rev. Food Sci. Nutr., 23(4), 323-395 (1986). https://doi.org/10.1080/10408398609527429
  6. V. B. Tolstoguzov, In 'Understanding and Controlling the Microstructure of Complex Foods', pp. 185-206, 2007.
  7. C. H. Remsen and J. P. Clark, J. Food Process Eng., 2(1), 39-64 (1978). https://doi.org/10.1111/j.1745-4530.1978.tb00194.x
  8. W. E. Moore and J. L. Carter, J. Texture Stud., 5(1), 77-88 (1974). https://doi.org/10.1111/j.1745-4603.1974.tb01089.x
  9. S. Emami, L. G. Tabil, R. T. Tyler, and W. J. Crerar, J. Food Eng., 82(4), 460-465 (2007). https://doi.org/10.1016/j.jfoodeng.2007.03.002
  10. M. B. Cardoso, D. Samios, and N. P. Silveira, Starch-Starke, 58(7), 345-352 (2006). https://doi.org/10.1002/star.200600495
  11. R. W. Kerr, F. C. Cleveland, and W. J. Katzbeck, J. Am. Chem. Soc., 73(1), 111-117 (1951). https://doi.org/10.1021/ja01145a042
  12. J. D. Timpa, 'Characterization by size exclusion chromatography with refractive index and viscometry: complex carbohydrates-cellulose, starch and plant cell wall polymers', Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering, 272-273 (1993).
  13. Z. P. Stojanovic, K. Jeremic, S. Jovanovic, W. Nierling, and M. D. Lechner, Starch-Starke, 61(3-4), 199-205 (2009). https://doi.org/10.1002/star.200800085
  14. K. Muneeruddin, J. J. Thomas, P. A. Salinas, and I. A. Kaltashov, Anal. Chem., 86(21), 10692-10699 (2014). https://doi.org/10.1021/ac502590h
  15. P. Hong, S. Koza, and E. S. P. Bouvier, J. Liq. Chromatogr. Rel. Technol., 35(20), 2923-2950 (2012).
  16. K. G. Wahlund and J. C. Giddings, Anal. Chem., 59(9), 1332-1339 (1987). https://doi.org/10.1021/ac00136a016
  17. A. Litzen and K. G. Wahlund, J. Chromatogr. A, 476(C), 413-421 (1989). https://doi.org/10.1016/S0021-9673(01)93885-3
  18. K. G. Wahlund and A. Litzen, J. Chromatogr. A, 461(C), 73-87 (1989). https://doi.org/10.1016/S0021-9673(00)94276-6
  19. A. Litzen and K. G. Wahlund, Anal. Chem., 63(10), 1001-1007 (1991). https://doi.org/10.1021/ac00010a013
  20. A. Litzen, Anal. Chem., 65(4), 461-470 (1993). https://doi.org/10.1021/ac00052a025
  21. M. Van Bruijnsvoort, K. G. Wahlund, G. Nilsson, and W. T. Kok, J. Chromatogr. A, 925(1-2), 171-182 (2001). https://doi.org/10.1016/S0021-9673(01)01020-2
  22. S. You, S. G. Stevenson, M. S. Izydorczyk, and K. R. Preston, Cereal Chem., 79(5), 624-630 (2002). https://doi.org/10.1094/CCHEM.2002.79.5.624
  23. S. Lee, P.-O. Nilsson, G. S. Nilsson, and K.-G. Wahlund, J. Chromatogr. A, 1011(1-2), 111-123 (2003). https://doi.org/10.1016/S0021-9673(03)01144-0
  24. H. Dou, B. Zhou, H. D. Jang, and S. Lee, J. Chromatogr. A, 1340, 115-120 (2014). https://doi.org/10.1016/j.chroma.2014.03.014
  25. D. Perez-Rea, B. Bergenståhl, and L. Nilsson, Anal. Bioanal. Chem., 407(15), 4315-4326 (2015). https://doi.org/10.1007/s00216-015-8611-8
  26. P. Roger, B. Baud, and P. Colonna, J. Chromatogr. A, 917(1-2), 179-185 (2001). https://doi.org/10.1016/S0021-9673(01)00689-6
  27. W. J. Kim, H. E. Chul, S. T. Lim, J. H. Han, S. G. You, and S. Lee, Bull. Korean Chem. Soc., 28(12), 2489-2492 (2007). https://doi.org/10.5012/bkcs.2007.28.12.2489
  28. A. Rolland-Sabate, P. Colonna, M. G. Mendez-Montealvo, and V. Planchot, Biomacromolecules, 8(8), 2520-2532 (2007). https://doi.org/10.1021/bm070024z
  29. H. Dou, E. Magnusson, J. Choi, F. Duan, L. Nilsson, and S. Lee, Food Chem., 192, 228-234 (2016). https://doi.org/10.1016/j.foodchem.2015.07.019
  30. J. Alftren, J. M. Peñarrieta, B. Bergenståhl, and L. Nilsson, Food Hydrocoll., 26(1), 54-62 (2012). https://doi.org/10.1016/j.foodhyd.2011.04.008
  31. L. A. Bello-Perez, P. Roger, B. Baud, and P. Colonna, J. Cereal Sci., 27(3), 267-278 (1998). https://doi.org/10.1006/jcrs.1998.0186
  32. J. J. Kirkland, C. H. Dilks Jr, S. W. Rementer, and W. W. Yau, J. Chromatogr. A, 593(1-2), 339-355 (1992). https://doi.org/10.1016/0021-9673(92)80303-C
  33. L. A. Bello-Perez, O. Paredes-Lopez, P. Roger, and P. Colonna, Cereal Chem., 73(1), 12-17 (1996).
  34. S. H. Yoo and J. L. Jane, Carbohydr. Polym., 49(3), 307-314 (2002). https://doi.org/10.1016/S0144-8617(01)00339-3
  35. C. Yang, B. Meng, M. Chen, X. Liu, Y. Hua, and Z. Ni, Carbohydr. Polym., 64(2), 190-196 (2006). https://doi.org/10.1016/j.carbpol.2005.11.017
  36. M. M. Millard, W. J. Wolf, F. R. Dintzis, and J. L. Willett, Carbohydr. Polym., 39(4), 315-320 (1999). https://doi.org/10.1016/S0144-8617(99)00021-1
  37. H. J. He, R. P. Yu, T. Zhu, Z. B. Gu, and H. Xu, Guang Pu Xue Yu Guang Pu Fen Xi, 26(9), 1636-1639 (2006).

Acknowledgement

Supported by : Hannam University