DOI QR코드

DOI QR Code

Functionalization of Au surfaces with 4-(carboxymethyl)aniline and amine-terminated dendrimers for enhanced surface density of antibodies on immunosensor Au chips

  • Lee, Yongwoon (Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University) ;
  • Ju, Youngwon (Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University) ;
  • Kim, Joohoon (Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University)
  • Received : 2017.01.31
  • Accepted : 2017.02.09
  • Published : 2017.02.25

Abstract

Here, we demonstrate surface functionalization of Au chips with 4-(carboxymethyl)aniline (CMA) and amine-terminated polyamidoamine (PAMAM) dendrimers for immobilization of antibodies on the Au surfaces. Use of the functionalization strategy led to high surface density of the immobilized antibodies on the Au chips. Specifically, we found that the functionalization of Au chips with CMA and amine-terminated $6^{th}$ generation PAMAM dendrimers allowed immobilization of immunoglobulin (IgG) antibodies with high surface density, which is 5 times higher than that obtained with Au surfaces functionalized with CMA and ethylenediamine.

Keywords

4-(Carboxymethyl)aniline;Dendrimer;Surface density of antibodies;Immunosensor Au chip

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. M. S. Wrighton, Science, 231(4733), 32-37 (1986). https://doi.org/10.1126/science.231.4733.32
  2. H. Randriamahazaka and J. Ghilane, Electroanalysis, 28(1), 13-26 (2016). https://doi.org/10.1002/elan.201500527
  3. B. P. Corgier, A. Laurent, P. Perriat, L. J. Blum, and C. A. Marquette, Angew. Chem. Int. Ed., 46(22), 4108-4110 (2007). https://doi.org/10.1002/anie.200605010
  4. P. K. Ajikumar, J. K. Ng, Y. C. Tang, J. Y. Lee, G. Stephanopoulos, and H.-P. Too, Langmuir, 23(10), 5670-5677 (2007). https://doi.org/10.1021/la063717u
  5. K. T. Lee, J. W. Coffey, K. J. Robinson, D. A. Muller, L. Grondahl, M. A. F. Kendall, P. R. Young, and S. R. Corrie, Langmuir, 33(3), 773-782 (2017). https://doi.org/10.1021/acs.langmuir.6b03933
  6. K. T. Lee, D. A. Muller, J. W. Coffey, K. J. Robinson, J. S. McCarthy, M. A. F. Kendall, and S. R. Corrie, Anal. Chem., 86(20), 10474-10483 (2014). https://doi.org/10.1021/ac5031682
  7. L. Sun and R. M. Crooks, Langmuir, 18(21), 8231-8236 (2002). https://doi.org/10.1021/la020498d
  8. S. Gan, P. Yang, and W. Yang, Biomacromolecules, 10(5), 1238-1243 (2009). https://doi.org/10.1021/bm900011h
  9. T. H. Kim, H. S. Choi, B. R. Go, and J. Kim, Electrochem. Commun., 12(6), 788-791 (2010). https://doi.org/10.1016/j.elecom.2010.03.034
  10. H. Ju, C. M. Koo, and J. Kim, Chem. Commun., 47(45), 12322-12324 (2011). https://doi.org/10.1039/c1cc14997k
  11. G. De Leener, F. Evoung-Evoung, A. Lascaux, J. Mertens, A. G. Porras-Gutierrez, N. Le Poul, C. Lagrost, D. Over, Y. R. Leroux, F. Reniers, P. Hapiot, Y. Le Mest, I. Jabin, and O. Reinaud, J. Am. Chem. Soc., 138(39), 12841-12853 (2016). https://doi.org/10.1021/jacs.6b05317
  12. S. B. Lee, Y. Ju, Y. Kim, C. M. Koo, and J. Kim, Chem. Commun., 49(79), 8913-8915 (2013). https://doi.org/10.1039/c3cc41403e
  13. W. S. Yeap, M. S. Murib, W. Cuypers, X. Liu, B. van Grinsven, M. Ameloot, M. Fahlman, P. Wagner, W. Maes, and K. Haenen, Chem. Electro. Chem., 1(7), 1145-1154 (2014).
  14. M. Delamar, R. Hitmi, J. Pinson, and J. M. Saveant, J. Am. Chem. Soc., 114(14), 5883-5884 (1992). https://doi.org/10.1021/ja00040a074
  15. B. P. Corgier, C. A. Marquette, and L. J. Blum, J. Am. Chem. Soc., 127(51), 18328-18332 (2005). https://doi.org/10.1021/ja056946w
  16. Y. Kim and J. Kim, Anal. Chem., 86(3), 1654-1660 (2014). https://doi.org/10.1021/ac403415m
  17. S. B. Lee, J. Kwon, and J. Kim, Electroanalysis, 27(9), 2180-2186 (2015). https://doi.org/10.1002/elan.201500154
  18. J. Yoon, T. Cho, H. Lim, and J. Kim, Anal. Bioanal. Chem., 408(25), 7165-7172 (2016). https://doi.org/10.1007/s00216-016-9680-z
  19. J. M. Kim, H. Ju, H. S. Choi, J. Lee, J. Kim, J. Kim, H. D. Kim, and J. Kim, Bull. Korean Chem. Soc., 31(2), 491-494 (2010). https://doi.org/10.5012/bkcs.2010.31.02.491
  20. M. Tencer, O. Krupin, B. Tezel, and P. Berini, J. Electrochem. Soc., 160(1), H22-H27 (2013). https://doi.org/10.1149/2.013303jes
  21. B. P. Corgier, S. Bellon, M. Anger-Leroy, L. J. Blum, and C. A. Marquette, Langmuir, 25(16), 9619-9623 (2009). https://doi.org/10.1021/la900762s
  22. C. A. Mandon, L. J. Blum, and C. A. Marquette, Chem. Phys. Chem., 10(18), 3273-3277 (2009). https://doi.org/10.1002/cphc.200900599
  23. N. B. Li and J. Kwak, Electroanalysis, 19(23), 2428-2436 (2007). https://doi.org/10.1002/elan.200703968
  24. S. Watanabe and S. L. Regen, J. Am. Chem. Soc., 116(19), 8855-8856 (1994). https://doi.org/10.1021/ja00098a074
  25. M. Nemanashi and R. Meijboom, Langmuir, 31(33), 9041-9053 (2015). https://doi.org/10.1021/acs.langmuir.5b02020
  26. S. W. Svenningsen, A. Janaszewska, M. Ficker, J. F. Petersen, B. Klajnert-Maculewicz, and J. B. Christensen, Bioconjugate Chem., 27(6), 1547-1557 (2016). https://doi.org/10.1021/acs.bioconjchem.6b00213