Analyzing the Effectiveness of a Best Management Practice on Sediment Yields Using a Spatially Distributed Model

공간분포형 모델을 이용한 최적관리방안의 토사 유출 저감 효과에 관한 연구

  • Lee, Taesoo (Dept. of Geography, Chonnam National University)
  • Received : 2017.02.08
  • Accepted : 2017.02.20
  • Published : 2017.02.28


Management of non-point sources for water quality control practice is complicating but very important. Sediments mainly from croplands are prioritized in non-point source management due to the sediment attached phosphorous. In this study, flow and sediment yields are modeled in Oenam watershed located in Hwasun, Jeollanam-do, a upstream of Juam Lake. A spatially distributed model and GIS(Geographic Information System) data was used to find out hot spots of sediment yields, to analyze the effectiveness of filter strips, and to visualize the effectiveness. The impacts of filter strips was estimated on the reduction of flow and sediments at 17.2% and 46.4% respectively when the filter strips were installed in the sub-watersheds with the most serious sediment yields.

유역에서의 수질관리를 수행함에 있어 비점오염원의 관리는 매우 중요하면서 복잡한 경우가 많다. 비점오염원의 관리에서 가장 우선시 되는 것은 토사 유출량의 관리이다. 이는 주로 농경지에서 유출되는 토사와 그에 흡착된 인(phosphorous)을 관리하는 것이다. 이 연구에서는 전라남도 화순군에 위치하고 주암호의 상류에 해당되는 외남천 유역의 유출량과 토사 유출량을 공간분포형 모델을 이용해 모의하였다. 또한 필터스트립의 저감 효과를 분석하기 위해 GIS(Geographic Information System) 데이터를 이용하여 필터스트립을 모의하고 공간분포형 모델의 특성을 이용하여 토사 유출량이 심각한 지역의 공간분포를 파악하고 필터스트립의 저감 효과를 시각적으로 나타내었다. 토사 유출량이 가장 심한 소유역에 필터스트립을 설치한 결과 유출수와 토사 유출량이 각각 17.2%와 46.4%가 감소되는 것으로 예측되었다.



Supported by : 전남대학교


  1. 이태수, 2016, "SWAT 모델을 이용한 외남천 유역의 토사 및 총인 유출량 분석," 한국지역지리학회지, 22 (1), 240-250.
  2. 최동호.정재운.이경숙.최유진.조소현.박하나.임병진. 장남익, 2012, "유량-부하량관계식을 이용한 주암호 외남천 유역의 유황별 유달율 산정," 한국환경과학회지 21(1), 31-39.
  3. 한국헌.윤광식.정재운.윤석군.김영주, 2005, "주암호 농촌 소유역 오염부하특성," 한국농공학회논문집 47(3), 77-86.
  4. Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R., 1998, Large area hydrologic modeling and assessment Part I: Model development, Journal of the American Water Resources Association, 34(1), 73-89.
  5. Betrie, G. D., Mohamed, Y. A., van Griensven, A., and Srinivasan, R., 2011, Sediment management modelling in the Blue Nile Basin using SWAT model, Hydrology and Earth System Science, 15(3), 807-818
  6. Bracmort, K.S., Engel, B.A. and Frankenberger, J.R., 2004, Evaluation of structural best management practices 20 years after installation: Black Creek Watershed, Indiana, Journal of Soil and Water Conservation, 59(5), 659-667.
  7. Dabney, S. M., Liua, Z., Lanec, M., Douglasc, J., Zhua, J., and Flanagan, D.C., 1999, Landscape benching from tillage erosion between grass hedges, Soil & Tillage Research, 51, 219-231.
  8. Flanagan, D. C. and Nearing, M. A., 1995, USDA - Water erosion prediction project: Hillslope profile and watershed model documentation, National Soil Erosion Research Laboratory Report No. 10. West Lafayette, Indiana.
  9. Fox, G. A. and Penn, C. J., 2013, Empirical model for quantifying total phosphorus reduction by vegetative filter strips, Transactions of the ASABE, 56(4), 1461-1469.
  10. Haque, M. Z., Rahim, S., Abdullah, M. P., Embi, A. F. and Elfithri, R., 2016, Predicting Sediment Load and Runoff in GeoWEPP Environment from Langat Sub Basin, Malaysia, Nature Environment and Pollution Technology; Karad, 15(3), 1077-1082.
  11. Laflen, J. M., Lane, L. J. and Foster, G. R., 1991, WEPP: A new generation of erosion prediction technology, Journal of Soil and Water Conservation, 46(1), 34-38.
  12. Lee, T., Rister, M. E., Narasimhan, B., Srinivasan, R., Andrew, D. and Ernst, M. R., 2010, Evaluation and spatially distributed analyses of proposed costeffective BMPs for reducing phosphorous level in Cedar Creek Reservoir, Texas, Transaction of ASABE, 53(5), 1619-1627.
  13. Lowrance, R., Dabney, S. and Schultz, R., 2002, Improving water and soil quality with conservation buffers, Journal of Soil and Water Conservation, 57(2), 36A-43A.
  14. Meghdadi, A. R., 2013, Identification of effective best management practices in sediment yield diminution using GeoWEPP: the Kasilian watershed case study, Environmental Monitoring and Assessment, 185(12), 9803-9817.
  15. Naveen C. A., Rister, E. D., Lacewell, R. D., Lee, T., Blumenthal, J., and Srinivasan, R., 2013, The Economics of Mitigating Effects of BioEnergy Production on Water Quality, Conference Proceeding of University Council on Water Resources, June 11, 2013, Tahoe, CA.
  16. Novotny, V. and Olem, H., 1994, Water Quality: Prevention, Identification, and Management of Diffuse Pollution, Van Nostrand Reinhold, New York, NY.
  17. Pearce, R. A., Trlica, M. J., Leininger, W. C., Mergen, D. E., and Frasier, G. W., 1998, Sediment movement through riparian vegetation under simulated rainfall and overland flow, Journal of Range Management, 51, 301-308.
  18. Polyakov, V. O. and Nearing, M. A., 2004, Rare earth element oxides for tracing sediment movement, Catena, 55, 255-276.
  19. Renschler, C. S., 2003, Designing geo-spatial interfaces to scale process models: the GeoWEPP approach, Hydrological Processes, 17, 1007.
  20. USEPA, 2002, National Water Quality Inventory, Washington DC, Report no. EPA-841-R-02-001.
  21. Wang, X., White, M., Tuppad, P., Lee, T., Srinivasan, R., Zhai, T., Andrews, D. and Narasimhan, B., 2013, Simulating sediment loading into the major reservoirs in Trinity River Basin, Journal of Soil and Water Conservation Society, 68(5), 372-383.
  22. Winston, R. J., Anderson, A. R., and Hunt, W. F., 2017, Modeling Sediment Reduction in Grass Swales and Vegetated Filter Strips Using Particle Settling Theory, Journal of Environmental Engineering, 143(1), 1-12.
  23. Wischmeier, W. H. and Smith, D. D., 1959, Predicting rainfall erosion losses from cropland east of the Rocky Mountains: Guide for selection of practices for soil and water conservation, U.S. Department of Agriculture, Agricultural Handbook No.82.