• Zhu, Hongmei (College of Mathematics and Information Science Henan Normal University)
  • Received : 2015.09.23
  • Published : 2017.03.31


In this paper, we study a class of Finsler metrics called general (${\alpha},{\beta}$)-metrics, which are defined by a Riemannian metric ${\alpha}$ and a 1-form ${\beta}$. We show that every general (${\alpha},{\beta}$)-metric with isotropic Berwald curvature is either a Berwald metric or a Randers metric. Moreover, a lot of new isotropic Berwald general (${\alpha},{\beta}$)-metrics are constructed explicitly.


Supported by : National Natural Science Foundation of China, Youth Science Fund of Henan Normal University, doctoral scientific research foundation of Henan Normal University


  1. S. Bacso and M. Matsumoto, On Finsler spaces of Douglas type-a generalization of the notion of Berwald space, Publ. Math. Debrecen 51 (1997), no. 3-4, 385-406.
  2. D. Bao, C. Robles, and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geom. 66 (2004), no. 3, 377-435.
  3. R. Bryant, Some remarks on Finsler manifolds with constant flag curvature, Houston J. Math. 28 (2002), no. 2, 221-262.
  4. X. Chen, X. Mo, and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature, J. London Math. Soc. 68 (2003), no. 3, 762-780.
  5. X. Chen and Z. Shen, Randers metrics with special curvature properties, Osaka J. Math. 40 (2003), no. 1, 87-101.
  6. X. Chen and Z. Shen, On Douglas metrics, Publ. Math. Debreen 66 (2007), 503-512.
  7. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169 (2009), 317-340.
  8. X. Cheng, Z. Shen, and Y. Tian, Einstein (${\alpha},\;{\beta}$)-metrics, Israel J. Math. 192 (2012), no. 1, 221-249.
  9. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics, 25 Vol. 6 (World Scientific Publishing, Hackensack, NJ, 2005), x+192 pp.
  10. E. Guo, H. Liu, and X. Mo, On spherically symmetric Finsler metrics with isotropic Berwald curvature, Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 10, 1350054, 13 pp.
  11. B. Li and Z. Shen, Projectively flat fourth root Finsler metrics, Can. Math. Bull. 55 (2012), no. 1, 138-145.
  12. X. Mo and H. Zhu, On a class of projectively flat Finsler metrics of negative constant flag curvature, Internat. J. Math. 23 (2012), no. 8, 1250084, 14 pp.
  13. Z. Shen, Diffierential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
  14. Z. Shen and C. Yu, On a class of Einstein Finsler metrics, Internat. J. Math. 25 (2014), no. 4, 1450030, 18 pp.
  15. A. Tayebi and B. Najafi, On isotropic Berwald metric, Ann. Polon. Math. 103 (2012), no. 2, 109-121.
  16. A. Tayebi and M. Rafie-Rad, S-curvature of isotropic Berwald metrics, Sci. China Ser. A 51 (2008), no. 12, 2198-2204.
  17. C. Yu and H. Zhu, On a new class of Finsler metrics, Differential Geom. Appl. 29 (2011), no. 2, 244-254.
  18. C. Yu and H. Zhu, Projectively flat general (${\alpha},\;{\beta}$)-metrics with constant flag curvature, J. Math. Anal. Appl. 429 (2015), no. 2, 1222-1239.
  19. H. Zhu, A class of Finsler metrics of scalar flag curvature, Differntial Geom. Appl. 40 (2015), 321-331.
  20. H. Zhu, On general (${\alpha},\;{\beta}$)-metrics with vanishing Douglas curvature, Internat. J. Math. 26 (2015), no. 9, 1550076, 16 pp.

Cited by

  1. On a class of almost regular Landsberg metrics pp.1869-1862, 2019,