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SCREEN ISOTROPIC LEAVES ON LIGHTLIKE

HYPERSURFACES OF A LORENTZIAN MANIFOLD

Mehmet Gülbahar

Abstract. In the present paper, screen isotropic leaves on lightlike hy-
persurfaces of a Lorentzian manifold are introduced and studied which
are inspired by the definition of isotropic immersions in the Riemannian
context. Some examples of such leaves are mentioned. Furthermore, some
relations involving curvature invariants are obtained.

1. Introduction

The notion of isotropic immersions in Riemannian geometry was firstly in-
troduced by B. O’Neill [28] in 1965 as follows:

Let ϕ : (M, g) → (˜M, g̃) be an isometric immersion between Riemannian

manifolds (M, g) and (˜M, g̃). The immersion ϕ is called λ-isotropic if there
exists a real valued function λ such that at any point p ∈ M , the second
fundamental form h satisfies

(1.1) ‖h(X,X)‖ = λ

for all unit vector X ∈ TpM . If the function λ is constant at every point of M ,
then M is called a (constant) isotropic submanifold.

Later, the isotropic immersions between non-degenerate manifolds have been
studied by many authors in [1, 7, 8, 9, 14, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27,
29, 30, 31] etc.

The main purpose of the present paper is to continue this frame of works for
degenerate immersions, especially for lightlike hypersurfaces of a Lorentzian
manifold. But there are some difficulties about studying isotropy for these
submanifolds. The fundamental problems are that the second fundamental
form of a lightlike hypersurface is a null vector and a screen distribution on
lightlike submanifolds isn’t canonical. Thus, the notion of isotropy in a lightlike
hypersurface can be studied only on any leaf of a screen distribution which must
be canonical and integrable.
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2. Preliminaries

In this section, we recall some basic facts about lightlike hypersurfaces by
following the notations and formulas used in [10, 12, 13].

Let (M, g) be an (n+ 1)-dimensional lightlike hypersurface of a Lorentzian

manifold (˜M, g̃) with the induced degenerate metric g from g̃. The radical

space Rad TpM at p ∈ M , is a vector bundle of rank 1, defined by

(2.1) Rad TpM = {ξ ∈ TpM : gp(ξ,X) = 0, ∀X ∈ TpM}.

The complementary non-degenerate vector bundle S(TM) of Rad TM in tan-
gent bundle TM is called screen distribution of M . Thus, we have

(2.2) TM = Rad TM ⊕ort S(TM),

where ⊕ort denotes the orthogonal direct sum. From (2.2), there exits a
field of frame {ξ, e1, . . . , en} on a coordinate neighborhood U on M such that
Rad TM |U = Span{ξ} and S(TM)|U = Span{e1, . . . , en}. It is known that
there exists a unique smooth section {N} for any basis {ξ} on Rad TM satis-
fying

(2.3) g̃(N,X) = g̃(N,N) = 0, g̃(N, ξ) = 1

for all X ∈ Γ(S(TM)). The bundle tr(TM) = Span{N} is called the lightlike

transversal bundle of M . From (2.2) and (2.3), we have the following decom-
position:

(2.4) T ˜M = TM ⊕ tr(TM) = S(TM)⊕ort (RadTM ⊕ tr(TM)) ,

where ⊕ denotes the direct sum, but it is not orthogonal.

Let ˜∇ be the Levi-Civita connection on ˜M . The Gauss and Weingarten
formulas are given by

˜∇XY = ∇XY + h(X,Y ),(2.5)

˜∇XN = −ANX +∇⊥
XN(2.6)

for any X,Y ∈ Γ(TM), where ∇XY,ANX ∈ Γ(TM) and h(X,Y ),∇XN ∈
Γ(tr(TM)). Here, the tensors h and AN are called the second fundamental

form and the shape operator of M , respectively. If we put

(2.7) B(X,Y ) = g̃(h(X,Y ), ξ), w(x) = g̃(∇⊥
XN, ξ)

in (2.5) and (2.6), respectively, we have

˜∇XY = ∇XY +B(X,Y )N,(2.8)

˜∇XN = −ANX + w(X)N.(2.9)

Taking into consideration (2.3) and (2.8), it is clear that B is symmetric, inde-
pendent of choosing screen distribution and it vanishes on the radical space.
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Let P be the projection morphism of Γ(TM) onto Γ(S(TM)). From (2.2),
we can write

∇XPY = ∇∗
XY + C(X,Y )ξ,(2.10)

∇Xξ = −A∗
ξX + w(X)ξ(2.11)

for all X,Y ∈ TM , where ∇∗
XY,A∗

ξX ∈ Γ(S(TM)). Using equations (2.3) and

(2.8)-(2.11), we have

(2.12) B(X,Y ) = g(A∗
ξX,Y ), C(X,Y ) = g(ANX,Y )

and

(2.13) g̃(ANX,N) = g̃(A∗
ξX,N) = 0.

A lightlike hypersurface (M, g, S(TM)) is called totally geodesic if h = 0. If
there exists a smooth function µ on tr(TM) satisfying

(2.14) B(X,Y ) = g(X,Y )µ

for all X,Y ∈ Γ(TM), then M is called totally umbilical [11]. Furthermore, M
is called minimal if

(2.15) trace|S(TM)(h) = 0,

where trace|S(TM)(h) denotes the trace of h restricted to S(TM) with respect
to the degenerate metric g [5].

A lightlike hypersurface (M, g, S(TM)) is called screen locally conformal if
the shape operators AN and A∗

ξ are related by

(2.16) AN = ϕA∗
ξ ,

where ϕ is a non-vanishing smooth function on a neighborhood U in M [3].
Let us denote the curvature tensors of the ambient manifold and the lightlike

hypersurface by ˜R and R, respectively. Then the following relation between
these tensors holds:

g̃( ˜R(X,Y )Z, PU) = g(R(X,Y )Z, PU) +B(X,Z)C(Y, PU)

−B(Y, Z)C(X,PU)(2.17)

for any X,Y, Z, U ∈ TM .
Let Π = Span{ei, ej} be a 2-dimensional non-degenerate plane in TpM .

Then the sectional curvature at p is expressed by [4]

(2.18) K(Π) =
g(Rp(ej , ei)ei, ej)

gp(ei, ei)gp(ej , ej)− gp(ei, ej)2
.

Now, we recall the following result [6]:

Theorem 2.1. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Rie-

mannian manifold (˜M, g̃). Then the following assertions are equivalent:
i) S(TM) is integrable.

ii) h∗ is symmetric on Γ(S(TM)).
iii) AN is self-adjoint on Γ(S(TM)) with respect to g.
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As a consequence of Theorem 2.1, we obtain the following:

Corollary 2.2. Let (M, g, S(TM)) be a lightlike hypersurface. The sectional

curvature is symmetric if and only if S(TM) is integrable.

3. Screen isotropy in a lightlike hypersurface

Let (M, g, S(TM)) be an (n + 1)-dimensional lightlike hypersurface of a

Lorentzian manifold (˜M, g̃). Suppose S(TM) is integrable and (M ′, g′) is an

n-dimensional leaf of S(TM) immersed in ˜M of codimension 2 with the non-
degenerate metric g′. From (2.8) and (2.10), we have

(3.1) ˜∇XY = ∇′
XY + C(X,Y )ξ +B(X,Y )N

for all X,Y ∈ Γ(S(TM)). Here, ∇′ denotes the induced connection of M ′ from
∇. It follows that the second fundamental form of M ′, denoted by h′, is given
by

(3.2) h′(X,Y ) = C(X,Y )ξ +B(X,Y )N.

Hence, the squared norm of the vector h′(X,Y ) is given by

(3.3) ‖h′(X,Y )‖2 = 2C(X,Y )B(X,Y ).

Let Π = Span{X,Y } be a non-degenerate plane section in TpM . The dis-
criminant of the tensor h′, denoted by ∆(Π), is a real valued function on the
plane section Π which is defined by

(3.4) ∆(Π) =
g̃(h′(X,X), h′(Y, Y ))− ‖h′(X,Y )‖2

Q(X,Y )
,

where Q(X,Y ) is the area of the parallelogram with sides X and Y such that

(3.5) Q(X,Y ) = g(X,X)g(Y, Y )− g(X,Y )2.

From equations (2.17), (2.18) and (3.4), we have the following lemma:

Lemma 3.1. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian

manifold (˜M, g̃). Then, we have

(3.6) 2K(Π) = 2 ˜K(Π) + ∆(Π)

for any non-degenerate plane section Π. Here, ˜K denotes the sectional curva-

ture map of ambient manifold ˜M .

Considering Corollary 2.2 and Lemma 3.1, we get the followings immedi-
ately:

Theorem 3.2. The discriminant ∆ is well defined and invariant for any non-

degenerate plane section in TpM if and only if S(TM) is integrable.



SCREEN ISOTROPIC LEAVES ON LIGHTLIKE HYPERSURFACES 433

Theorem 3.3. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian

space form Rm
1 (c) of constant curvature c. The discriminant ∆ is constant

for any non-degenerate plane section in TpM , p ∈ M , if and only if M is of

constant curvature.

Now, we state the following definition:

Definition. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian
manifold and M ′ be a leaf of S(TM) which is integrable. The manifold M ′ is
called λ-screen isotropic and the tensor h′ is called λ-isotropic if there exists
a real valued function λ such that ‖h′(X,X)‖ = 2λ for all unit vectors X ∈
Γ(S(TM)). If λ is constant for all points, then M ′ is called a isotropic leaf.

Example 3.4 (Lightlike Cone in the Minkowski space). Let R4
1 be the Minkow-

ski space with signature (−,+,+,+) of the canonical basis {∂x1, ∂x2, ∂x3, ∂x4}
and M be a submanifold of R4

1 given by

{(t, t cosu cos v, t cosu sin v, t sinu) : t > 0, u ∈ (0,
π

2
), v ∈ [0, 2π]}.

Then we have

ξ = ∂x1 + cosu cos v∂x2 + cosu sin v∂x3 + sinu∂x4,

N =
1

2
(−∂x1 + cosu cos v∂x2 + cosu sin v∂x3 + sinu∂x4) ,

w1 = t(− sinu cos v∂x2 − sinu sin v∂x3 + cosu∂x4),

w2 = t(− cosu sin v∂x2 + cosu cos v∂x3).

If we put e1 = w1

‖w1‖
and e2 = w2

‖w2‖
, then it follows that {e1, e2} is a set of

orthonormal vectors. Furthermore, it can be considered a 2-dimensional leaf
M ′ of S(TM) such that

TM
′

= Span{e1, e2}.
By a straightforward computation, we obtain

B(e1, e1)C(e1, e1) = B(e2, e2)C(e2, e2) =
1

2t2
,

which implies that M ′ is screen isotropic with λ = ∓ 1
2t .

Example 3.5 (Lightlike Monge hypersurfaces of Rn+2
1 ). Let Ω be an open set

of Rn+2
1 and F : Ω → R be a smooth function. A Monge hypersurface is defined

by

M = {(x0, . . . , xn+1) ∈ R
n+2
1 : x0 = F (x1, . . . , xn+1)}.

Such a hypersurface is lightlike if and only if F is a solution of the partial
differential equation

n+1
∑

α=1

(F ′
xα

)2 = 1.
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It is known these types of hypersurfaces are screen locally conformal with the
conformal function ϕ = 1

2 and the tensor B is given by [10]

B(
∂

∂xα
,

∂

∂xβ
) = − ∂2F

∂xα∂xβ
.

Therefore, a leaf of a lightlike Monge hypersurface is λ-screen isotropic if and
only if

F (x1, . . . , xn+1) = c∓ λ

n+1
∑

α

x2
α + bαxα,

where bα, c are any real numbers for α = 1, . . . , n+ 1.

Theorem 3.6. Let (M, g, S(TM)) be an (n+ 1)-dimensional (n ≥ 2) lightlike
hypersurface of a Lorentzian manifold and M ′ be a leaf of S(TM). For any

non-degenerate plane section Π spanned by unit vector fields X and Y , we have

the following statements:

i) ∆(Π) = 4λ2 if and only if h′(X,X) = h′(Y, Y ) and B(X,Y ) = 0 or

C(X,Y ) = 0.
ii) ∆(Π) = −8λ2 if and only if ‖h′(X,Y )‖2 = 4λ2 and h′ is minimal, that

is, h′(X,X) + h′(Y, Y ) = 0.

Proof. Let us consider a quadrilinear function L defined by

(3.7) L(X,Y, U, V ) = g̃ (h′(X,Y ), h′(U, V ))− 4λ2g̃(X,Y )g̃(U, V )

for anyX,Y, U, V ∈ Γ(S(TM)). From Theorem 2.1, it is clear that this function
is symmetric. Since h′ is λ-isotropic, we obtain

(3.8) F (X) = L(X,X,X,X) = 0

for all unit vector fields X ∈ Γ(S(TM)). Thus, we have also

(3.9) F (X + Y ) + F (X − Y ) = 0

and it follows that

(3.10) L(X,X, Y, Y ) + 2L(X,Y,X, Y ) = 0,

which implies that

(3.11) g̃(h′(X,X), h′(Y, Y )) + 2‖h′(X,Y )‖2 = 4λ2

for all unit vector fields X and Y . From (3.4) and (3.11), we obtain

(3.12) ∆(Π) + 3‖h′(X,Y )‖2 = 4λ2

and

(3.13) 2∆(Π) + 4λ2 = 3g̃(h′(X,X), h′(Y, Y )).

From (3.12) and (3.13), the proof of theorem is straightforward. �
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Definition. A leaf M ′ of a integrable screen distribution S(TM) on a lightlike
hypersurface is called totally umbilical if

(3.14) h′(X,Y ) = g(X,Y )H ′, ∀X,Y ∈ Γ(S(TM)),

where H ′ is the mean curvature vector of M ′.

Theorem 3.7. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface

of a Lorentzian manifold and M ′ be a λ-screen isotropic leaf of S(TM). Then

the conformal factor ϕ can’t be negative.

Proof. If (M, g, S(TM)) is screen locally conformal, then we can write

(3.15) h′(X,X) = B(X,X)N + ϕB(X,X)ξ

for any orthonormal vector field X on Γ(S(TM)). Since M ′ is a λ-screen
isotropic leaf of S(TM), we have

(3.16) ϕ[B(X,X)]2 = 2λ2,

which shows that ϕ can’t be negative. �

Corollary 3.8. Let (M, g, S(TM)) be a screen conformal lightlike hypersurface

of a Lorentzian manifold and M ′ be a λ-screen isotropic leaf of S(TM). Then

we have

(3.17) ∆(Π) ≤ 4λ2.

∆(Π) = 4λ2 for all non-degenerate plane section Π if and only if M ′ is totally

umbilical.

Proof. From (3.11), we have

(3.18) g̃(h′(X,X), h′(Y, Y )) = 4(λ2 −B(X,Y )C(X,Y ))

for all orthonormal vectorsX,Y ∈ Γ(S(TM)). Since (M, g) is screen conformal,
we get from Theorem 3.7 that

(3.19) g̃(h′(X,X), h′(Y, Y )) ≤ 4λ2.

Putting (3.19) in (3.11), (3.12) and (3.13), we get (3.17).
If ∆(Π) = 4λ2 for all non-degenerate plane section, then we obtain

(3.20) ϕ[B(X,Y )]2 = 0,

which implies that h′(X,Y ) = 0 since ϕ is a non-vanishing function. From the
statement (i) of Theorem 3.6, it is clear that M ′ is totally umbilical. The proof
of the converse part is straightforward. �

Theorem 3.9. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian

manifold and M ′ be a totally umbilical leaf of S(TM). If M ′ is a λ-screen

isotropic leaf, then the following assertions hold:

i) The mean curvature vector H ′ of M ′ is space-like.

ii) M is screen conformal.
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Proof. From (3.1), we write

(3.21) H ′ = αξ + ρN,

where ρ and α are two smooth functions. Since M ′ is totally umbilical, we have

(3.22) h′(X,Y ) = g(X,Y )(αξ + ρN)

for all X,Y ∈ Γ(S(TM)). Using (3.22), it follows that

(3.23) B(X,Y ) = ρg(X,Y ) and C(X,Y ) = αg(X,Y ).

Therefore, g̃(H ′, H ′) = 2αρ > 0, which implies that H ′ is space-like. Also, we
have

(3.24) C(X,Y ) =
α

ρ
B(X,Y )

for all X,Y ∈ Γ(S(TM)), which shows that M is screen conformal with the
conformal factor α

ρ . �

Theorem 3.10. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian

manifold and M ′ be a totally umbilical leaf of S(TM). If M ′ is λ-screen

isotropic, then we have

(3.25) trace(A∗
ξ)trace(AN ) ≥ 0.

Proof. Let {e1, . . . , en} be an orthonormal basis of Γ(S(TM)). Using (3.14),
we have

(3.26) B(e1, e1)C(e1, e1) = · · · = B(en, en)C(en, en) = 2λ2.

Furthermore, we also have from (3.14) that

(3.27) B(e1, e1)N + C(e1, e1)ξ =
1

n

(

traceA∗
ξN + traceAN ξ

)

.

Therefore, we obtain

(3.28) trace(A∗
ξ)trace(AN ) = 2n2λ2,

which implies (3.25). �

Corollary 3.11. Let (M, g, S(TM)) be a screen conformal lightlike hypersur-

face of a Lorentzian manifold and M ′ be a totally umbilical leaf of S(TM). If

M ′ is λ-screen isotropic, then

(3.29) trace(A∗
ξ) = ∓

√
2nλ√
ϕ

.

We now recall the following theorem of D. H. Jin in [18]:

Theorem 3.12. Let (M, g) be an (n+ 1)-dimensional (n ≥ 3) lightlike hyper-

surface of a semi-Riemannian space form (˜M(c), g̃) such that S(TM) is totally
umbilical. Then B = 0 or C = 0.

Considering Theorem 3.12, we get the following corollary:
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Corollary 3.13. If M ′ be any leaf in a lightlike hypersurface which satisfies

the assumptions of Theorem 3.12. Then M ′ isn’t λ-isotropic.

Definition. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian
manifold and M ′ be an n-dimensional leaf of S(TM). The manifold M ′ is
called minimal if, for every point p ∈ M ,

(3.30) H ′(p) =

n
∑

i=1

h′(ei, ei) = 0,

where {e1, . . . , en} is an orthonormal basis on Γ(S(TM)).

From the above definition, we have the followings immediately:

Theorem 3.14. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian

manifold and M ′ be a leaf of S(TM). The manifold M ′ is minimal if and only

if (M, g) is minimal and trace(AN ) = 0.

Corollary 3.15. Let (M, g, S(TM)) be a screen conformal lightlike hypersur-

face of a Lorentzian manifold and M ′ be a leaf of S(TM). Then M ′ is minimal

if and only if (M, g, S(TM)) is minimal.

Corollary 3.16. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorentzian

manifold and M ′ be a 2-dimensional λ-screen isotropic leaf of S(TM). If M ′

is minimal, then

(3.31) g̃(h′(X,X), h′(Y, Y )) < 0

for all orthonormal vector fields X,Y ∈ Γ(S(TM)).

Proof. Let {e1, e2} be an orthonormal basis Γ(S(TM)). Then we have

(3.32) h′(e1, e1) + h′(e2, e2) = 0,

which is equivalent to

(3.33) [B(e1, e1) +B(e2 + e2)]N + [C(e1, e1) + C(e2 + e2)]ξ = 0.

Therefore, we get

B(e1, e1)C(e1, e1) +B(e1, e1)C(e2, e2) +B(e2, e2)C(e1, e1)

+B(e2, e2)C(e2, e2) = 0.(3.34)

Since M ′ is λ-screen isotropic, we have

(3.35) B(e1, e1)C(e2, e2) +B(e2, e2)C(e1, e1) = −4λ2.

Since we can choose X = e1 and Y = e2, therefore the above equation implies
(3.31). �

Proposition 3.17. Let (M, g, S(TM)) be a lightlike hypersurface of a Lorent-

zian manifold and M ′ be a screen isotropic leaf of S(TM). If M is totally

umbilical, then we have the following statements:

i) M ′ is totally umbilical.
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ii) M ′ isn’t minimal.

Proof. Under the assumption, we have from equation (2.14) that

(3.36) B(X,X) = µ

for all unit vector fields X ∈ Γ(S(TM)). Since M ′ is λ-screen isotropic, we
also have from equation (3.36) that

(3.37) C(X,X) =
λ2

2µ

for all unit vector fields X ∈ Γ(S(TM)). Let {e1, . . . , en} be an orthonormal
basis of Γ(S(TM)). Then, for any point p ∈ M , we get

H ′(p) =
1

n
(h′(e1, e1) + · · ·+ h′(en, en))

= µN +
λ2

2µ
ξ,(3.38)

which implies that

(3.39) H ′(p) = h′(ei, ei)

for all i ∈ {1, . . . , n}. Thus, it is clear from (3.39) that M ′ is totally umbilical
and it isn’t minimal. �

4. Some results on lightlike hypersurfaces of a semi-Euclidean space

We begin this section with recalling the following definition given in [15].

Definition. Let (M, g, S(TM)) be an (n+ 1)-dimensional lightlike hypersur-
face of a Lorentzian manifold and S(TM) be an integrable distribution. Then
the screen Ricci tensor, denoted by RicS(TM), is defined by

(4.1) RicS(TM)(X,Y ) = trace|S(TM){Z → R(X,Z)Y }
for any X,Y, Z ∈ Γ(S(TM)). Here, trace|S(TM) denotes the trace restricted to
S(TM) with respect to the degenerate metric g.

Suppose that {e1, . . . , en−1, X} to be an orthonormal basis of Γ(S(TM)).
The screen Ricci curvature at a unit vector X ∈ Γ(S(TM)) is given by

(4.2) RicS(TM)(X) =
n−1
∑

j=1

g(R(X, ej)ej , X).

Let us consider the following functions f1 and f2 defined by

(4.3) f1(X) = ‖h′(X,X)‖2

and

(4.4) f2(X) =
n−1
∑

j=1

‖h′(ei, X)‖2 + f1(X),

respectively. Then we have the following lemma:
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Lemma 4.1. Let (M, g, S(TM)) be (n+ 1)-dimensional lightlike hypersurface

of a semi-Euclidean space. Then we have

(4.5) RicS(TM)(X) = ng(AH′X,X)− f2(X)

for any unit vector X in Γ(S(TM)).

Proof. Using (2.17), (3.15), (4.2) and (4.4), we have

RicS(TM)(X) =

n−1
∑

j=1

[g̃(h′(ej , ej), h
′(X,X))− f1(X)− ‖h′(ej , X)‖2],

which is equivalent to (4.5). �

Let M ′ be a leaf of S(TM) on a lightlike hypersurface of Rn+2
1 . Denote the

set of all unit vectors in TpM
′ by T 1

pM
′, that is,

(4.6) T 1
pM

′ = {X ∈ TpM
′ : gp(X,X) = 1}.

From Lemma 4.1 and equation (4.6), we have the following corollaries:

Corollary 4.2. Let M ′ be a leaf of S(TM) on a screen conformal lightlike

hypersurface of a semi-Euclidean space. Then we have the followings:

i) Let the conformal function ϕ be non-negative. The screen Ricci curva-

ture RicS(TM) is non-negative for all vector X ∈ T 1
pM

′ if and only if

{X ∈ T 1
pM

′ : g(AHX,X) < 0} is a empty set for all points p ∈ M .

ii) Let the conformal function ϕ be non-positive. The screen Ricci curva-

ture RicS(TM) is non-positive for all vector X ∈ T 1
pM

′ if and only if

{X ∈ T 1
pM

′ : g(AHX,X) > 0} is a empty set for all points p ∈ M .

Corollary 4.3. Let M ′ be an n-dimensional isotropic leaf of S(TM). For any
X ∈ T 1

pM
′, we have

(4.7) RicS(TM)(X) ≤ ng(AH′X,X)− λ2.

The equality case of (4.7) holds at a point p ∈ M if and only if M ′ is totally

umbilical.

Corollary 4.4. If M ′ is an n-dimensional isotropic leaf of S(TM), then

(4.8) RicS(TM)(X) < ng(AH′X,X)

for any X ∈ T 1
pM

′.

Definition ([15]). Let (M, g, S(TM)) be an (n+1)-dimensional lightlike hyper-
surface of a Lorentzian manifold. Suppose S(TM) is integrable and {e1, . . . , en}
is an orthonormal basis of Γ(S(TM)). The screen scalar curvature at a point
p ∈ M , denoted by rS(TM)(p), is defined by

(4.9) rS(TM)(p) =
1

2

n
∑

i,j=1

K(Πij),

where Πij = Span{ei, ej} is a plane section on Γ(S(TM)).
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Now, we recall the following lemmas for future uses:

Lemma 4.5 ([2]). Let M̄ be an n-dimensional non-degenerate submanifold of

a real space form Rm(c) and p be a point of M . Then, we have

(4.10)

∫

T 1
p M̄

〈ĀHX,X〉dxp = ‖H̄(p)‖2vol(T 1
p M̄),

where dxp is the canonical volume element of T 1
p M̄ and vol(T 1

p M̄) denotes the

volume of T 1
p M̄ .

Lemma 4.6 ([19]). Let M̄ be an n-dimensional non-degenerate submanifold

of a real space form Rm(c) and p be a point of M . Then we have

(4.11)

∫

T 1
p M̄

S̄(X,X)dxp =
r̄

n
vol(T 1

p M̄),

where S̄ and r̄ are the Ricci tensor and the scalar curvature defined on M̄ ,

respectively.

From the above facts, we have the following:

Theorem 4.7. Let M ′ be an n-dimensional leaf of S(TM) on a lightlike hy-

persurface (M, g, S(TM)) of a semi-Euclidean space. Then we have

(4.12)

∫

T 1
pM

′

f2(X)dxp =

(

n‖H ′(p)‖2 − rS(TM)(p)

n

)

vol(T 1
pM

′)

for any X ∈ T 1
pM

′.

Proof. If we integrate in (4.5) over the range T 1
pM

′, we get

(4.13)

∫

T 1
pM ′

RicS(TM)(X) =

∫

T 1
pM ′

[n g(AH′X,X)− f2(X)] vol(T 1
pM

′).

From Lemma 4.5, Lemma 4.6 and (4.13), equation (4.12) is straightforward. �

Taking into account of Corollary 4.4 and Theorem 4.7, we obtain the follow-
ing corollaries immediately:

Corollary 4.8. If M ′ is an n-dimensional isotropic leaf of S(TM), then we

have

(4.14) rS(TM)(p) < n2‖H ′(p)‖2.

Corollary 4.9. If the leaf M ′ is a minimal isotropic leaf, then the screen scalar

curvature is negative.

With similar arguments to the proof of Theorem 3.4 in [16], we have the
following:
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Theorem 4.10. Let (M, g, S(TM)) be a screen locally conformal lightlike

hypersurface of a semi-Euclidean space and M ′ be an n-dimensional leaf of

S(TM). Then we have

(4.15) rS(TM (p) ≤ n(n− 1)‖H ′(p)‖2.
The equality case of (4.15) holds at every point of M ′ if and only if M ′ is totally

umbilical.

From Theorem 4.7 and Theorem 4.10, we obtain the following corollary:

Corollary 4.11. If M ′ be an n-dimensional totally umbilical leaf in an (n+1)-
dimensional screen locally conformal lightlike hypersurface of a semi-Euclidean

space, then we have

(4.16)

∫

T 1
pM

′

f2(X)dxp = ‖H ′(p)‖2vol(T 1
pM

′).
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[15] M. Gülbahar, E. Kılıç, and S. Keleş, Chen-like inequalities on lightlike hypersurfaces of

a Lorentzian manifold, J. Inequal. Appl. 2013 (2013), 266, 18 pp.



442 M. GÜLBAHAR
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