DOI QR코드

DOI QR Code

NORMAL FAMILIES OF MEROMORPHIC FUNCTIONS WITH MULTIPLE VALUES

  • Li, Yuntong (Department of Basic Course Shaanxi Railway Institute) ;
  • Liu, Zhixiu (College of Science Nanchang Institute of Technology)
  • Received : 2016.03.10
  • Published : 2017.03.31

Abstract

In this paper, we consider some normality criteria concerning multiple values. Let $\mathcal{F}$ be a family of meromorphic functions defined in a domain D. Let k be a positive integer and ${\psi}(z){\not\equiv}0$, ${\infty}$ be a meromorphic function in D. If, for each $f{\in}\mathcal{F}$ and $z{\in}D$, (1) $f(z){\neq}0$, and all of whose poles are multiple; (2) all zeros of $f^{(k)}(z)-{\psi}(z)$ have multiplicities at least k + 3 in D; (3) all poles of ${\psi}(z)$ have multiplicities at most k in D, then $\mathcal{F}$ is normal in D.

Acknowledgement

Supported by : National Science Foundation of Shaanxi province, Foundation of Shaanxi Railway Institute

References

  1. H. H. Chen and H. X. Hua, Normality criterion and singular directions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, in: Conf. Proc. Lecture Notes Anal., pp. 34-40, vol. I, Internat. Press, Cambridge, MA, 1994.
  2. M. L. Fang, Normality criteria for a family of meromorphic functions, Acta Math. Sinica 37 (1994), no. 1, 86-90.
  3. Y. X. Gu, X. C. Pang, and M. L. Fang, Normal Families and its Application, Science Press, Beijing, 2007.
  4. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  5. J. Schiff, Normal Families, Springer-Verlag, Berlin, 1993.
  6. G. F. Xue and X. C. Pang, A criterion for normality of a family of meromorphic functions, J. East China Norm. Univ. Natur. Sci. Ed. 2 (1988), no. 2, 15-22.
  7. L. Yang, A fundamental inequality and its application, Chinese Ann. Math. Ser. B 4 (1983), no. 3, 347-354.
  8. L. Yang, Value Distribution Theory, Springer/Science Press, Berlin, 1993.
  9. L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. 35 (1998), no. 3, 215-230. https://doi.org/10.1090/S0273-0979-98-00755-1
  10. L. J. Zhao, Normal families of meromorphic functions and multiple values, Acta Math. Sci. Ser. A. Chin. Ed. 35 (2015), no. 2, 256-263.