DOI QR코드

DOI QR Code

Magnetic-vortex Dynamic Quasi-crystal Formation in Soft Magnetic Nano-disks

  • Kim, Junhoe (National Creative Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Sang-Koog (National Creative Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University)
  • 투고 : 2017.02.22
  • 심사 : 2017.03.14
  • 발행 : 2017.03.31

초록

We report a micromagnetic numerical study on different quasi-crystal formations of magnetic vortices in a rich variety of dynamic transient states in soft magnetic nano-disks. Only the application of spin-polarized dc currents to a single magnetic vortex leads to the formation of topological-soliton quasi-crystals composed of different configurations of skyrmions with positive and negative half-integer numbers (magnetic vortices and antivortices). Such topological object formations in soft magnets, not only in the absence of Dzyaloshinskii-Moriya interaction but also without magnetocrystalline anisotropy, are discussed in terms of two different topological charges, the winding number and the skyrmion number. This work offers an insight into the dynamic topological-spin-texture quasi-crystal formations in soft magnets.

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. A. Malozemoff and J. Slonzewski, Magnetic Domain Walls in Bubble Materials, Academic, New York (1979).
  2. A. Hubert and R. Schafer, Magnetic Domains: The Analysis of Magnetic Microstructure, Springer, Berlin (1998).
  3. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000). https://doi.org/10.1126/science.289.5481.930
  4. A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern, and R. Wiesendanger, Science 298, 577 (2002). https://doi.org/10.1126/science.1075302
  5. K. Shigeto, T. Okuno, K. Mibu, T. Shinjo, and T. Ono, Appl. Phys. Lett. 80, 4190 (2002). https://doi.org/10.1063/1.1483386
  6. K.-S. Lee, B.-W. Kang, Y.-S. Yu, and S.-K. Kim, Appl. Phys. Lett. 85, 1568 (2004). https://doi.org/10.1063/1.1784892
  7. K.-S. Lee, S. Choi, and S.-K. Kim, Appl. Phys. Lett. 87, 192502 (2005). https://doi.org/10.1063/1.2128478
  8. B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schutz, Nature 444, 461 (2006). https://doi.org/10.1038/nature05240
  9. R. Hertel and C. Schneider, Phys. Rev. Lett. 97, 177202 (2006). https://doi.org/10.1103/PhysRevLett.97.177202
  10. K. Y. Guslienko, B. A. Ivanov, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, J. Appl. Phys. 91, 8037 (2002). https://doi.org/10.1063/1.1450816
  11. M. Buess, R. Hollinger, T. Haug, K. Perzlmaier, U. Krey, D. Pescia, M. R. Scheinfein, D. Weiss, and C. H. Back, Phys. Rev. Lett. 93, 077207 (2004). https://doi.org/10.1103/PhysRevLett.93.077207
  12. H. Wang and C. E. Campbell, Phys. Rev. B 76, 220407(R) (2007). https://doi.org/10.1103/PhysRevB.76.220407
  13. R. P. Cowburn, Nature Mater. 6, 255 (2007). https://doi.org/10.1038/nmat1877
  14. J. Thomas, Nature Nanotechnol. 2, 206 (2007). https://doi.org/10.1038/nnano.2007.92
  15. K.-S. Lee, M.-W. Yoo, Y.-S. Choi, and S.-K. Kim, Phys. Rev. Lett. 106, 147201 (2011). https://doi.org/10.1103/PhysRevLett.106.147201
  16. M. Kammerer, M. Weigand, M. Curcic, M. Noske, M. Sproll, A. Vansteenkiste, B. Van Waeyenberge, H. Stoll, G. Woltersdorf, C. H. Back, and G. Schuetz, Nature Commun. 2, 279 (2011). https://doi.org/10.1038/ncomms1277
  17. R. Wang and X. Dong, Appl. Phys. Lett. 100, 082402 (2012). https://doi.org/10.1063/1.3687909
  18. M.-W. Yoo, J. Lee, and S.-K. Kim, Appl. Phys. Lett. 100, 172413 (2012). https://doi.org/10.1063/1.4705690
  19. S.-K. Kim, K.-S. Lee, Y.-S. Yu, and Y.-S. Choi, Appl. Phys. Lett. 92, 022509 (2008). https://doi.org/10.1063/1.2807274
  20. S. Bohlens, B. Kruger, A. Drews, M. Bolte, G. Meier, and D. Pfannkuche, Appl. Phys. Lett. 93, 142508 (2008). https://doi.org/10.1063/1.2998584
  21. S. Barman, A. Barman, and Y. Otani, IEEE Trans. Magn. 46, 1342 (2010). https://doi.org/10.1109/TMAG.2010.2040587
  22. H. Jung, Y.-S. Choi, K.-S. Lee, D.-S. Han, Y.-S. Yu, M.Y. Im, P. Fischer, and S.-K. Kim, ACS Nano 6, 3712 (2012). https://doi.org/10.1021/nn3000143
  23. D.-S. Han, A. Vogel, H. Jung, K.-S. Lee, M. Weigand, H. Stoll, G. Schutz, P. Fischer, G. Meier, and S.-K. Kim, Sci. Rep. 3, 2262 (2013). https://doi.org/10.1038/srep02262
  24. T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962). https://doi.org/10.1016/0029-5582(62)90775-7
  25. A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).
  26. S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009). https://doi.org/10.1126/science.1166767
  27. X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Nature 465, 901 (2010). https://doi.org/10.1038/nature09124
  28. S. Heinze, K. V. Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendager, G. Bihlmayer, and S. Blugel, Nature Physics 7, 713 (2011). https://doi.org/10.1038/nphys2045
  29. A. Fert, V. Cros, and J. Sampaio, Nature Nanotech. 8, 152 (2013). https://doi.org/10.1038/nnano.2013.29
  30. I. E. Dzyaloshinskii, J. Phys. Chem. Sol. 4, 241 (1958). https://doi.org/10.1016/0022-3697(58)90076-3
  31. T. Moriya, Phys. Rev. 120, 91 (1960). https://doi.org/10.1103/PhysRev.120.91
  32. X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, Nature Commun. 3, 988 (2012). https://doi.org/10.1038/ncomms1990
  33. J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nature Nanotech. 8, 742 (2013). https://doi.org/10.1038/nnano.2013.176
  34. O. Tretiakov and O. Tchernyshyov, Phys. Rev. B 75, 012408 (2007). https://doi.org/10.1103/PhysRevB.75.012408
  35. E. E. Huber Jr., D. O. Smith, and J. B. Goodenough, J. Appl. Phys. 29, 294 (1958). https://doi.org/10.1063/1.1723105
  36. The version of the OOMMF code used is 1.2a4. See http://math.nist.gov/oommf.
  37. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).
  38. T. L. Gilbert, Phys. Rev. 100, 1243 (1955).
  39. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). https://doi.org/10.1016/0304-8853(96)00062-5
  40. Y.-S. Choi, M.-W. Yoo, K.-S. Lee, Y.-S. Yu, H. Jung, and S.-K. Kim, Appl. Phys. Lett. 96, 072507 (2010). https://doi.org/10.1063/1.3310017
  41. J.-G. Caputo, Y. Gaididei, F. G. Mertens, and D. D. Sheka, Phys. Rev. Lett. 98, 056604 (2007). https://doi.org/10.1103/PhysRevLett.98.056604
  42. D. D. Sheka, Y. Gaididei, and F. G. Mertens, Appl. Phys. Lett. 91, 082509 (2007). https://doi.org/10.1063/1.2775036
  43. Y. Liu, H. He, and Z. Zhang, Appl. Phys. Lett. 91, 242501 (2007). https://doi.org/10.1063/1.2822436
  44. O. M. Volkov, V. P. Kravchuk, D. D. Sheka, and Y. Gaididei, Phys. Rev. Lett. 84, 052404 (2011).
  45. Y. Gaididei, O. M. Volkov, V. P. Kravchuk, and D. D. Sheka, Phys. Rev. B 86, 144401 (2012). https://doi.org/10.1103/PhysRevB.86.144401
  46. B. Binz, A. Vishwanath, Physica B 403, 1336 (2008). https://doi.org/10.1016/j.physb.2007.10.136