DOI QR코드

DOI QR Code

Effect of Material Properties on Core Loss in Switched Reluctance Motor using Non-Oriented Electrical Steels

  • Kartigeyan, J. (Department of Electrical Engineering, Annamalai University) ;
  • Ramaswamy, M. (Department of Electrical Engineering, Annamalai University)
  • Received : 2016.11.10
  • Accepted : 2017.02.20
  • Published : 2017.03.31

Abstract

The effort attempts to investigate the influence of various non-oriented electrical steel sheets on the core loss of a switched reluctance motor (SRM). The core loss of the motor inherits a strong correlation with flux density and permeability of the material. The study involves the use of laminated 2.7 % high silicon steel suitable for the motor in view of its higher flux density and lower core loss. The accurate prediction of core loss leaves way to suggest measures for improving the performance of the SRM. The dynamic simulation measurements of a 1.5 kW, three-phase 12/8 SRM involve the finite element method (FEM) and use the data obtained experimentally from Epstein frame. The closeness of the simulated and hardware results obtained with laminations of M400-50A, DI MAX-M19 and DI MAX-M15 both for the stator and rotor, espouse a greater significance to the findings in terms of the core loss density and forge new dimensions for its use in the drive industry.

References

  1. International Energy Agency website, http://www.iea.org/etp/tracking/, 2013.
  2. T. J. E. Miller, Switched Reluctance Motors and Their Control, Clarendon, U. K, 1993.
  3. H. M. Hasanien, S. M. Muyeen, and J. Tamura, Energy Convers. Manage. 51, 2402 (2010). https://doi.org/10.1016/j.enconman.2010.05.004
  4. P. N. Materu and R. Krishnan, IEEE Trans. Ind. Electron. 36, 523 (1989). https://doi.org/10.1109/41.43012
  5. K. Ha and R. Krishnan, IEEE Trans. Ind. Appl. 43, 703 (2007). https://doi.org/10.1109/TIA.2007.895744
  6. N. H. Fuengwarodsakul, S. Bauer, O. Tsafak, and R. W. D. Doncker, Proc. European Conference on Power Electronics and Applications, 44 (2005).
  7. K. Nakamura, T. Ono, H. Goto, T. Watanabe, and O. Ichinokura, IEEE Trans. Magn. 41, 3919 (2005). https://doi.org/10.1109/TMAG.2005.854965
  8. S. Inamura, T Sakai, and K. Sawa, IEEE Trans. Magn. 39, 1554 (2003). https://doi.org/10.1109/TMAG.2003.810358
  9. A. M. Omekanda, IEEE Trans. Ind. Appl. 39, 672 (2003). https://doi.org/10.1109/TIA.2003.810632
  10. A. Chiba, Y. Takano, M. Takeno, T. Imakawa, N. Hoshi, M. Takemoto, and S. Ogasawara, IEEE Trans. Ind. Appl. 47, 1240 (2011). https://doi.org/10.1109/TIA.2011.2125770
  11. M. Ishida, N. Shiga, A. Honda, M. Kawano, and M. Komatsubara, Proc. 1st Japanese-Australian Joint Seminar on Applications of Electromagnetic Phenomena in Electrical and Mechanical Systems, 251 (2001).
  12. P. Beckley, Electrical Steels for Rotating Machines, The Institution of Engineering and Technology, London, 2002.
  13. H. A. Davies, F. Fiorillo, S. Flohrer, K. Guenther, R. Hasegawa, J. Sievert, L. Varga, and M. Yamaguchi, J. Magn. Mater. 320, 2411 (2008). https://doi.org/10.1016/j.jmmm.2008.03.058
  14. H. Toda, K. Senda, S. Morimoto, and T. Hiratani, IEEE Trans. Magn. 49, 3850 (2013). https://doi.org/10.1109/TMAG.2013.2242195
  15. E. El-Kharashi, Energy Convers. Manage. 48, 2261 (2007). https://doi.org/10.1016/j.enconman.2007.04.006
  16. A. Parsapour, B. M. Dehkordi, and M. Moallem, J. Magn. Mater. 378, 118 (2015). https://doi.org/10.1016/j.jmmm.2014.10.148
  17. Y. Qiang, C. Laudensack, and D. Gerling, International Conference on Electrical Machines and Systems, 1 (2011).
  18. G. J. Li, J. Ojeda, E. Hoang, M. Lecrivain, and M. Gabsi, IEEE Trans. Magn. 47, 839 (2011). https://doi.org/10.1109/TMAG.2011.2104968
  19. A. Belahcen and A. Arkkio, IET Electr. Power Appl. 4, 259 (2010). https://doi.org/10.1049/iet-epa.2009.0139
  20. AK Steels USA, http//:www.aksteel.com/pdf/markets_products/electrical/non_oriented_bulletin.pdf, 2003.
  21. BIS 649-97, Bureau of Indian Standards, New Delhi, 1997.
  22. ASTM A343-97, American Society for Testing and Materials, West Conshohocken, 2000.
  23. IEC 60404-2, Third ed., ICS 20.030, 2008.
  24. A. Krings and J. Soulard, J. Electr. Engg. 10, 162 (2010).
  25. J. Muhlethaler, J. Biela, J. W. Kolar, and A. Ecklebe, IEEE Trans. Power. Electron. 27, 953 (2012).
  26. J. Reinert, A. Brockmeyer, and R. D. Doncker, IEEE Trans. Ind. Electron. 37, 1055 (2001).
  27. H. Jordan, Elektr. Nach. Techn. 1, 7 (1924).
  28. W. A. Pluta, Electr Rev. 87, 37 (2011).
  29. J. Fang and S. Xu, IEEE Trans. Magn. 51 (2015).
  30. H. Hayashi, K. Nakamura, A. Chiba, T. Fukao, K. Tungpimolrut, and D. G. Dorrell, IEEE Trans. Energy Convers. 24, 819 (2009). https://doi.org/10.1109/TEC.2009.2025425

Cited by

  1. Dynamic circuit model considering core losses and phase interaction for switched reluctance machines vol.12, pp.6, 2018, https://doi.org/10.1049/iet-epa.2017.0693