DOI QR코드

DOI QR Code

Preparation of Graphene-BiOCl/Fe3O4 Nanocomposites and Their Use as Photocatalysts for Organic Dyes Degradation

  • Received : 2017.02.02
  • Accepted : 2017.02.14
  • Published : 2017.03.31

Abstract

Graphene-$BiOCl/Fe_3O_4$ nanocomposites were synthesized from $BiOCl/Fe_3O_4$ and graphene in an electric furnace operating at $700^{\circ}C$ for 12 h. The nanocomposite surface morphology and crystal structure were characterized by scanning electron microscopy and X-ray diffraction. The produced graphene-$BiOCl/Fe_3O_4$ nanocomposites acted as efficient heterogeneous photocatalysts for the degradation of organic dyes, as confirmed by UV-vis spectrophotometry.

Acknowledgement

Supported by : Sahmyook University

References

  1. B. H. Hameed, A. A. Ahmad, and N. Aziz, "Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash", Chem. Eng. J., 133, 195 (2007). https://doi.org/10.1016/j.cej.2007.01.032
  2. J. H. Mo, Y. H. Lee, J. P. Kim, J. Y. Jeong, and J. G. Jegal, "Treatment of dye aqueous solution using nanofiltration polyamide composie membrance for the dye wastewater reuse", Dyes Pigm., 76, 429 (2008). https://doi.org/10.1016/j.dyepig.2006.09.007
  3. A. R. Khataee, M. N. Pons, and O. Zahraa, "Photocatalytic degradation of three azo dyes using immobilized $TiO_2$ nanoparticle on glass plates activated by UV light irradiation: influence of dye molecular structure", J. Hazard. Mater., 166, 451 (2009).
  4. M. Janus, J. Choina, and A. W. Morawski, "Azo dyes decomposition on new nitrogenmodified anatase $TiO_2$ with high adsorptivity", J. Hazard. Mater., 166, 1 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.024
  5. W. Q. Zhou, C. L. Yu, Q. Z. Fan, L. F. Wei, J. C. Chen, and J. C. Yu, "Ultrasonic fabrication of N-doped $TiO_2$ nanocrystals with mesoporous structure and enhanced visible light photocatalytic activity", Chin. J. Catal., 34, 1250 (2013). https://doi.org/10.1016/S1872-2067(12)60578-6
  6. C. L. Yu and J. C. Yu, "A simple way to prepare C-N codoped $TiO_2$ photocatalyst with visible light activity", Catal. Lett., 129, 462 (2009). https://doi.org/10.1007/s10562-008-9824-7
  7. S. Hoang, S. W. Guo, N. T. Hahn, A. J. Bard, and C. B. Mullins, "Visible light photoelectrochemical water oxidation on nitrogen-modified $TiO_2$ nanowires", Nano Lett., 12, 26 (2012). https://doi.org/10.1021/nl2028188
  8. F. Duan, Q. H. Zhang, D. J. Shi, and M. Q. Chen, "Enhanced visible light photocatalytic activity of $Bi_2WO_6$ via modification with polypyrrole", Appl. Surf. Sci., 268, 129 (2013). https://doi.org/10.1016/j.apsusc.2012.12.031
  9. X. W. Li, C. G. Niu, D. W. Huang, X. Y. Wang, X. G. Zhang, G. M. Zeng, and Q. Y. Niu, "Preparation of magnetically separable $Fe_3O_4$/BiOI nanocomposites and its visible photocatalytic activity", Appl. Surf. Sci., 286, 40 (2013). https://doi.org/10.1016/j.apsusc.2013.08.139
  10. X. Xiao and W. D. Zhang, "Hierarchical $Bi_7O_9I_3$ micro/nanoarchitecture: facile synthesis, growth mechanism, and high visible light photocatalytic performance", RSC Adv., 1, 1099 (2011). https://doi.org/10.1039/c1ra00323b
  11. B. Pare, B. Sarwan, and S. B. Jonnalagadda, "Photocatalytic mineralization study of malachite green on the surface of Mndoped BiOCl activated by visible light under ambient condition", Appl. Surf. Sci., 258, 247 (2011). https://doi.org/10.1016/j.apsusc.2011.08.040
  12. S. Shanaila, A. K. L. Sajjad, F. Chen, and J. Zhang, "$WO_3$/BiOCl, a novel heterojunction as visible light photocatalyst", J. Colloid Interface Sci., 356, 465 (2011). https://doi.org/10.1016/j.jcis.2011.01.015
  13. S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakaborty, D. W. Jung, and W. I. Lee, "Heterojunctioned BiOCl/$Bi_2O_3$, a new visible light photocatalyst", J. Catal., 262, 144 (2009). https://doi.org/10.1016/j.jcat.2008.12.020
  14. J. Cao, B. Y. Xu, H. L. Lin, B. Luo, and S. F. Chen, "Novel $Bi_2S_3$-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B", Catal. Commun., 26, 204 (2012). https://doi.org/10.1016/j.catcom.2012.05.025
  15. Y. Y. Liu, W. J. Son, J. B. Lu, B. B. Huang, Y. Dai, and M. H. Whangbo, "Composition Dependence of the Photocatalytic Activities of $BiOCl_{1-x}Br_{x}$ Solid Solutions under Visible Light", Chem. Eur. J., 17, 9342 (2011). https://doi.org/10.1002/chem.201100952
  16. F. Dong, Y. J. Sun, M. Fu, Z. B. Wu, and S. C. Lee, "Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers", J. Hazard. Mater., 220, 26 (2012).
  17. A. K. Geim and K. S. Novoselove, "The rise of graphene", Nat. Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  18. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electron properties of graphene", Rev. Mod. Phys., 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
  19. M. H. Cao, P. F. Wang, Y. H. Ao, C. Wang, J. Hou, and J. Qian, "Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable graphene-$TiO_2$ composite photocatalyst: Mechanism and intermediates analysis", Chem. Eng. J., 264, 113 (2015). https://doi.org/10.1016/j.cej.2014.10.011
  20. C. L. Yu, F. F. Cao, G. Li, R. F. Wei, J. C. Yu, R. C. Jin, Q. Z. Fan, and C. Y. Wang, "Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) composite photocatalysts with enhanced photocatalytic performance in dye degradation", Sep. Purif. Technol., 120, 110 (2013). https://doi.org/10.1016/j.seppur.2013.09.036
  21. M. A Subhan, N. Uddin, P. Sarker, A. K. Azad, and K. Begum, "Photoluminescence, photocatalytic and antibacterial activities of $CeO_2{\cdot}CuO{\cdot}ZnO$ nanocomposite fabricated by co-precipitation method", Spectrochim. Acta A Mol. Biomol. Spectrosc., 149, 839 (2015). https://doi.org/10.1016/j.saa.2015.05.024
  22. W. C. Oh, M. L. Chen, K. Y. Cho, C. K. Kim, Z. D. Meng, and L. Zhu, "Synthesis of Graphene-CdSe Composite by a Simple Hydrothermal Method and Its Photocatalytic Degradation of Organic Dyes", Chin. J. Catal., 32, 1577 (2011). https://doi.org/10.1016/S1872-2067(10)60264-1
  23. S. Guo, G. K. Zhang, Y. D. Guo, and J. C. Yu, "Graphene oxide-$Fe_2O_3$ hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants", Carbon, 60, 437 (2013). https://doi.org/10.1016/j.carbon.2013.04.058
  24. N. Li, Y. J. Jin, X. Hua, K. Wang, J. J. Xu, M. D. Chen, and F. Teng, "Uniform $Fe_2O_3$ nanocubes on BiOCl nanosheets and its improved photocatalytic activity", J. Mol. Catal. A Chem., 395, 428 (2014). https://doi.org/10.1016/j.molcata.2014.08.045
  25. Q. Z. Wang, J. Hui, Y. J. Huang, Y. M. Ding, Y. X. Cai, S. Q. Yin, Z. M. Li, and B. T. Su, "The preparation of BiOCl photocatalyst and its performance of photodegradation on dyes", Mater. Sci. Semicond. Process., 17, 87 (2014). https://doi.org/10.1016/j.mssp.2013.08.018
  26. T. Ghosh, K. Y. Cho, K. Ullah, V. Nikam, C. Y. Park, Z. D. Meng, and W. C. Oh, "High photonic effect of organic dye degradation by CdSe-graphene-$TiO_2$ particles", J. Ind. Eng. Chem., 19, 797 (2013). https://doi.org/10.1016/j.jiec.2012.10.020