Revisit of Thermoplastic EPDM/PP Dynamic Vulcanizates

  • Lim, Jaehwa (BK21 PLUS Center for Advanced Chemical Technology, Department Polymer Science and Engineering, Pusan National University) ;
  • Park, Jun Il (Yooil Rubber Company, Materials Division) ;
  • Park, Joon Chul (Hyundai Motor Group, Research and Development Division) ;
  • Jo, Mi Young (Hyundai Motor Group, Research and Development Division) ;
  • Bae, Jae Yeong (BK21 PLUS Center for Advanced Chemical Technology, Department Polymer Science and Engineering, Pusan National University) ;
  • Choi, Seok Jin (Hyundai NGV, 314 dong, Seoul National University) ;
  • Kim, Il (BK21 PLUS Center for Advanced Chemical Technology, Department Polymer Science and Engineering, Pusan National University)
  • Received : 2017.02.21
  • Accepted : 2017.03.09
  • Published : 2017.03.31


A comprehensive survey of the available literature showed that in the last few decades, there has been a growing interest in the use of thermoplastic vulcanizates (TPVs). TPVs are the second largest group of soft thermoplastic elastomers (TPEs) after styrene-based block copolymers, and offer a wide range of potential and proven applications, including in mechanical rubber goods, under-the-hood applications in the automotive field, industrial hose applications, electrical applications, consumer goods, and soft touch applications. Over the last two decades, TPVs have shown a strong and steady market growth (~12% per year). Commercialized TPVs are commonly based on blends of ethylene propylene diene monomer (EPDM) rubber and polypropylene (PP), and to a lesser extent on combinations of butyl or nitrile rubber with PP. EPDM/PP TPVs are characterized by finely dispersed crosslinked EPDM rubber particles (particles size varying between 0.5 and $2.0{\mu}m$) distributed in a continuous thermoplastic PP matrix. If the rubber particles of such a blend are small enough and if they are vulcanized well enough, then the properties of the blend are generally improved. This review article introduces various topics and aspects relevant to EPDM/PP TPVs. The development of TPVs, the use of various types of crosslinking systems and co-agents as crosslinking agents for PP/EPDM blends, the morphology and rheology of TPVs, and their typical end-use applications are also reviewed.


Supported by : 현대자동차그룹, 유일고무(주)


  1. V. V. Rajan, W. K. Dierkes, R. Joseph, and J. W. M. Noordermeer, "Science and technology of rubber reclamation with special attention to NR-based waste latex products", Prog. Polym. Sci., 31, 811 (2006).
  2. A. M. Gessler and W. H. Haslett (to Esso Research and Engineering Co.), "Process for preparing a vulcanized blend of crystalline polypropylene and chlorinated butyl rubber", U.S. Patent 3,037,954 (1962).
  3. W. K. Fisher (to Uniroyal, Inc.), "Thermoplastic blend of partially cured monoolefin copolymer rubber and polyolefin plastic", U.S. Patent 3,758,643 (1973).
  4. A. Y. Coran, B. Das and R. P. Patel (to Monsanto Co.), "Process for preparing a ball-point pen ink", U.S. Patent 4,130,435 (1978).
  5. S. Abdou-Sabet and M. A. Fath (to Monsanto Co.), "Thermoplastic elastomeric blends of olefin rubber and polyolefin resin", U.S. Patent 4,311,628 (1982).
  6. A. Y. Coran and R. Patel, "Rubber-thermoplastic compositions. Part VIII. nitrile rubber polyolefin blends with technological compatibilization", Rubber Chem. Technol., 56, 1045 (1983).
  7. S. Abdou-Sabet and K. Shen (to Monsanto Co.), "Process for the preparation of thermoplastic elastomers", U.S. Patent 4,594,390 (1982).
  8. W. Zou, R.-Y. Chen, C. Wu, and J.-P. Qu, "Influence of process parameters on property of PP/EPDM blends prepared by a novel vane extruder", J. Polym. Eng., 36, 899 (2016).
  9. S. S. Banerjee and A. K. Bhowmick, "An effective strategy to develop nanostructured morphology and enhanced physicomechanical properties of PP/EPDM thermoplastic elastomers", J. Mater. Sci., 51, 6722 (2016).
  10. M. Van Duin, "Crosslinking systems for EPDM/PP-based thermoplastic vulcanizates", paper presented at the International Rubber Conference, Birmingham, England, June 2001.
  11. M. A. L. Manchado and J. M. Kenny, "Use of benzene-1,3-bis(sulfonyl)azide as crosslinking agent of TPVs based on EPDM rubber-polyolefin blends", Rubber Chem. Technol., 74, 198 (2001).
  12. I. I. Ostromyslenski, "Peroxides as crosslinking agents for natural rubber", J. Russ. Phys. Chem. Soc., 47, 1467 (1915).
  13. J. B. Class, "Fundamentals of Crosslinking with Peroxides", Rubber and Plastics News, October 1995.
  14. M. van Duin, "Chemistry of EPDM cross-linking", Kautsch. Gummi Kunstst., 55, 150 (2002).
  15. M. D. Ellul and P. S. Ravishankar, Proceedings of the American Chemical society, PMSE Division, 1988, Boston, MA, USA.
  16. M. van Duin and A. Machado, "EPDM-based thermoplastic vulcanisates: Crosslinking chemistry and dynamic vulcanisation along the extruder axis", Polym. Deg. Stab., 90, 340 (2005).
  17. R. P. Lattimer, R. A. Kinsey, R. W. Layer, and C. K. Rhee, "The mechanism of phenolic resin vulcanization of unsaturated elastomers", Rubber Chem. Technol., 62, 107 (1989).
  18. M. van Duin, "The chemistry of phenol-formaldehyde resin crosslinking of EPDM as studied with low-molecular-weight models: part II. Formation of inert species, crosslink precursors and crosslinks", Rubber Chem. Technol., 73, 706 (2000).
  19. R. Winters, "Mechanism of resole and sulfur vulcanisation of EPDM", PhD thesis, Rijksuniversiteit Leiden, the Netherlands, 2000.
  20. F. Goharpey, A. A. Katbab, and H. Nazockdast, "Mechanism of morphology development in dynamically cured EPDM/PP TPEs. I. Effects of state of cure", J. Appl. Polym. Sci., 81, 2531 (2001).
  21. H. G. Fritz and R. Anderlik, "Thermoplastic elastomers based on PP/EPDM blends by dynamic vulcanization", Kautsch. Gummi Kunstst., 46, 374 (1993).
  22. M. Mali, P. Kadam, and S. Mhaske, "Preparation and characterization of vinyltrimethoxysilane and dicumyl peroxidecured (ethylene propylene diene monomer)/polypropylene thermoplastic vulcanizates", J. Vinyl Additive Technol., DOI: 10.1002/vnl.21512, 2015.
  23. G. N. Avgeropoulos and F. C. Weissert, "Heterogeneous blends of polymers. Rheology and morphology", Rubber Chem. Technol., 49, 93 (1976).
  24. B. D. Favis and D. Therrien, "Factors influencing structure formation and phase size in an immiscible polymer blend of polycarbonate and polypropylene prepared by twin-screw extrusion", Polymer, 32, 1474 (1991).
  25. Y. Kim, W. J. Cho, C. S. Ha, and J. H. Go, "Fracture Toughness of the Thermoplastic Vulcanizates from EPDM/PP/Ionomer Ternary Blends", J. Korea Institute Rubber Ind., 31, 341 (1996).
  26. P. Sengupta, J. W. M. Noordermeer, W. G. F. Sengers, and A. D. Gotsis, "A Comparative Study of Morphology and Structure related Properties of Saturated Olefinic Thermoplastic Elastomer Blends of EPDM/PP/Oil and SEBS/PP/Oil", Elastomers and Composites, 38, 27 (2003).
  27. T.-S. Lee, C.-R. Yoon, D.-S. Bang, D.-Y. Ahn, H.-S. Kye, and K.-C. Shin, "A Study on the Manufacturing and Mechanical Properties of the PA66/EPDM/PP Composites for Enhanced Low Temperature Fracture Resistances, Elastomers and Composites, 44, 164 (2009).
  28. S.-S. Na, K.-C. Song, and S.-K. Kim, "Influence of Blend Mode of Extender Oil on the Properties of EPDM/PP-Based Thermoplastic Vulcanizates", Elastomers and Composites, 44, 315 (2009).
  29. E. N. Kresge, Rubbery Thermoplastics blends. In: Polymer Blends, D. R. Paul and S. Newman, eds., New York, Academic Press, Vol. II, 1978.
  30. H. J. Radusch and T. Pham, "Morphology formation in dynamic vulcanized PP/EPDM blends", Kautsch Gummi Kunstst, 49, 249 (1996).
  31. A. A. Katbab, H. Nazockdast, and S. Bazgir, "Carbon blackreinforced dynamically cured EPDM/PP thermoplastic elastomers. I. Morphology, rheology, and dynamic mechanical properties", J. Appl. Polym. Sci., 75, 1127 (2000).<1127::AID-APP5>3.0.CO;2-2
  32. Z. Zhang, F. Yu, W. Yu, and H. Hongbin, "Non-isothermal crystallization behavior of dynamically vulcanized long chain branched polypropylene/ethylene-propylene-diene monomer blends", J. Polym. Res., 22, 1 (2015).
  33. H. J. Radush, "Phase morphology of dynamically vulcanized thermoplastic vulcanizates. In: Micro-and nanostructured multiphase polymer blend system: Phase Morphology and Interfaces", C. Harrats, S. Thomas, and G. Groeninckx, eds., Taylor & Francis, 2006.
  34. A. Y. Coran and R. P. Patel, "Thermoplastic elastomers by blending and dynamic vulcanization", in: Polypropylene: Structure, blends and composites, vol. 2, Copolymers and Blends, J. Karger-Kocsis, ed., Chapman & Hall, 1995.
  35. Y. Kikuchi, T. Fukui, T. Okada, and T. Inoue, "Elastic-plastic analysis of the deformation mechanism of PP-EPDM thermoplastic elastomer: Origin of rubber elasticity", Polym. Eng. Sci., 31, 1029 (1991).
  36. Y. Yang, T. Chiba, H. Saito, and T. Inoue, "Physical characterization of a polyolefinic thermoplastic elastomer", Polymer, 39, 3365 (1998).
  37. M. Soliman, van M. Dijk, van M. Es, and V. Shulmeister, "Deformation mechanism of thermoplastics vulcanisates investigated by combined FTIR and stress strain measurements", in: ANTEC conference proceeding, 1999, p.1947.
  38. J. Oderkerk, G. De Schaetzen, B. Goderis, L. Hellemans, and G. Groeninckx, "Micromechanical deformation and recovery processes of nylon-6/rubber thermoplastic vulcanizates as studied by atomic force microscopy and transmission electron microscopy", Macromolecules, 35, 6623 (2002).
  39. P. Steeman and W. Zoetelief, "Rheology of TPVs", in: ANTEC conference proceeding, 2000, p.3297.
  40. S. Abdou-Sabet, R. C. Puydak, and C. P. Rader, "Dynamically vulcanized thermoplastic elastomers", Rubber Chem. Technol., 69, 476 (1996).