DOI QR코드

DOI QR Code

Current Research on Conducting Polymer-Carbon Nanocomposites for Bioengineering Applications

  • Lee, Seunghyeon (Department of Chemical Engineering, Inha University) ;
  • Lee, Sang Kyu (Department of Chemical Engineering, Inha University) ;
  • Jang, Daseul (Department of Chemical Engineering, Inha University) ;
  • Shim, Bong Sup (Department of Chemical Engineering, Inha University)
  • Received : 2017.03.02
  • Accepted : 2017.03.06
  • Published : 2017.03.31

Abstract

Conducting polymers and carbon nanomaterials offer a wide range of applications because of their unique soft conducting properties. Specifically, these conducting polymer-carbon nanocomposites have recently been utilized in bioengineering applications, partly because of their improved biocompatibility compared to conventional conducting materials such as metals and ceramics. Based on the assumption that these composites offer an important application potential as functional materials for biomedical devices or even as biomaterials, this review surveys the recent research trends on conducting polymers-carbon nanocomposites, focusing on bioengineering applications such as polyaniline (PANI), poly(3,4-ethylenedioxythiophene) or PEDOT, polypyrrole (Ppy), and carbon nanotubes and graphene.

Acknowledgement

Supported by : 중소기업청

References

  1. C. K. Chiang, et al. Electrical conductivity in doped polyacetylene. Physical Review Letters 39, 1098 (1977). https://doi.org/10.1103/PhysRevLett.39.1098
  2. N. K. Guimard, N. Gomez, and C. E. Schmidt, "Conducting polymers in biomedical engineering", Progress in Polymer Science 32, 876 (2007).
  3. A. Pron and P. Rannou, "Processible conjugated polymers: from organic semiconductors to organic metals and superconductors", Progress in Polymer Science 27, 135 (2002).
  4. J.-C. Chiang and A. G. MacDiarmid, "'Polyaniline': Protonic acid doping of the emeraldine form to the metallic regime", Synthetic Metals 13, 193 (1986). https://doi.org/10.1016/0379-6779(86)90070-6
  5. J. Stejskal and R. G. Gilbert, "Polyaniline. Preparation of a conducting polymer (IUPAC technical report)", Pure and Applied Chemistry 74, 857 (2002). https://doi.org/10.1351/pac200274050857
  6. X. Crispin, et al. "Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study", Journal of Polymer Science Part B-Polymer Physics 41, 2561 (2003). https://doi.org/10.1002/polb.10659
  7. J. Wu, Morphology of poly (3,4-ethylene dioxythiophene) (PEDOT) thin films, crystals, cubic phases, fibers and tubes. (2011).
  8. B. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, "Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future", Advanced Materials 12, 481 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  9. M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene", Chemical Reviews 110, 132 (2010). https://doi.org/10.1021/cr900070d
  10. X. Y. Zhang, et al. "Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration", Carbon 49, 986 (2011). https://doi.org/10.1016/j.carbon.2010.11.005
  11. G. K. M. Mutlu, et al. "Biocompatible Nanoscale Dispersion of Single-Walled Carbon Nanotubes Minimizes in vivo Pulmonary Toxicity", Nano Letters 10, 1664 (2010). https://doi.org/10.1021/nl9042483
  12. C. A. Poland, et al. "Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study", Nature Nanotechnology 3, 423 (2008). https://doi.org/10.1038/nnano.2008.111
  13. C. Bussy, H. Ali-Boucetta, and K. Kostarelos, "Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes", Accounts of Chemical Research 46, 692 (2012).
  14. O. Breuer and U. Sundararaj, "Big returns from small fibers: A review of polymer/carbon nanotube composites", Polymer Composites 25, 630 (2004). https://doi.org/10.1002/pc.20058
  15. M. Moniruzzaman and K. I. Winey, "Polymer Nanocomposites Containing Carbon Nanotubes", Macromolecules 39, 5194 (2006). https://doi.org/10.1021/ma060733p
  16. P. J. F. Harris, "Carbon nanotube composites", International Materials Reviews 49, 31 (2004). https://doi.org/10.1179/095066004225010505
  17. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, "Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties", Progress in Polymer Science 35, 357 (2010).
  18. X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, "Dispersion and alignment of carbon nanotubes in polymer matrix: A review", Materials Science and Engineering: R: Reports 49, 89 (2005). https://doi.org/10.1016/j.mser.2005.04.002
  19. C. Peng, S. Zhang, D. Jewell, and G. Z. Chen, "Carbon nanotube and conducting polymer composites for supercapacitors", Progress in Natural Science 18, 777 (2008).
  20. F. Qu, M. Yang, J. Jiang, G. Shen, and R. Yu, "Amperometric biosensor for choline based on layer-by-layer assembled functionalized carbon nanotube and polyaniline multilayer film", Analytical Biochemistry 344, 108 (2005). https://doi.org/10.1016/j.ab.2005.06.007
  21. M. N. Hyder, et al. "Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications", ACS Nano 5, 8552 (2011). https://doi.org/10.1021/nn2029617
  22. M. D. Shirsat, C. O. Too, and G. G. Wallace, "Amperometric Glucose Biosensor on Layer by Layer Assembled Carbon Nanotube and Polypyrrole Multilayer Film", Electroanalysis 20, 150 (2008). https://doi.org/10.1002/elan.200704028
  23. D. Shao, et al. "Polyaniline Multiwalled Carbon Nanotube Magnetic Composite Prepared by Plasma-Induced Graft Technique and Its Application for Removal of Aniline and Phenol", The Journal of Physical Chemistry C 114, 21524 (2010). https://doi.org/10.1021/jp107492g
  24. T. Wu, Y. Pan, H. Bao, and L. Li, "Preparation and properties of chitosan nanocomposite films reinforced by poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) treated carbon nanotubes", Materials Chemistry and Physics 129, 932 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.030
  25. M. Ghaffari, et al. "Hybrid supercapacitor materials from poly(3,4-ethylenedioxythiophene) conformally coated aligned carbon nanotubes", Electrochimica Acta 112, 522 (2013). https://doi.org/10.1016/j.electacta.2013.08.191
  26. H. Mi, X. Zhang, S. An, X. Ye, and S. Yang, "Microwaveassisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite", Electrochemistry Communications 9, 2859 (2007). https://doi.org/10.1016/j.elecom.2007.10.013
  27. Y.-K. Lee, K.-J. Lee, D.-S. Kim, D.-J. Lee, and J.-Y. Kim, "Polypyrrole-carbon nanotube composite films synthesized through gas-phase polymerization", Synthetic Metals 160, 814 (2010). https://doi.org/10.1016/j.synthmet.2010.01.028
  28. Y.-S. Chen, Y. Li, H.-C. Wang, and M.-J. Yang, "Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole prepared by vapor phase polymerization", Carbon 45, 357 (2007). https://doi.org/10.1016/j.carbon.2006.09.011
  29. L. Li, et al. "Facile Fabrication of Uniform Core-Shell Structured Carbon Nanotube-Polyaniline Nanocomposites", The Journal of Physical Chemistry C 113, 5502 (2009). https://doi.org/10.1021/jp808582f
  30. L. Chen, et al. "Synthesis and electrochemical capacitance of core-shell poly (3,4-ethylenedioxythiophene)/poly (sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites", Electrochimica Acta 54, 2335 (2009). https://doi.org/10.1016/j.electacta.2008.10.071
  31. J. Wang, "Amperometric biosensors for clinical and therapeutic drug monitoring: A review", Journal of Pharmaceutical and Biomedical Analysis 19, 47 (1999). https://doi.org/10.1016/S0731-7085(98)00056-9
  32. L. D. Mello and L. T. Kubota, "Review of the use of biosensors as analytical tools in the food and drink industries", Food Chemistry 77, 237 (2002). https://doi.org/10.1016/S0308-8146(02)00104-8
  33. J. Wang, et al. "DNA electrochemical biosensors for environmental monitoring. A review", Analytica Chimica Acta 347, 1 (1997). https://doi.org/10.1016/S0003-2670(96)00598-3
  34. B. D. Malhotra, A. Chaubey, and S. P. Singh, "Prospects of conducting polymers in biosensors", Analytica Chimica Acta 578, 59 (2006). https://doi.org/10.1016/j.aca.2006.04.055
  35. P. R. Unwin and A. J. Bard, "Ultramicroelectrode voltammetry in a drop of solution: a new approach to the measurement of adsorption isotherms at the solid-liquid interface", Analytical Chemistry 64, 113 (1992). https://doi.org/10.1021/ac00026a003
  36. M. Liu, et al. "An Amperometric Biosensor Based on Ascorbate Oxidase Immobilized in Poly(3,4-ethylenedioxythiophene)/Multi-Walled Carbon Nanotubes Composite Films for the Determination of L-Ascorbic Acid", Analytical Sciences 27, 477 (2011). https://doi.org/10.2116/analsci.27.477
  37. N. Kaur, H. Thakur, and N. Prabhakar, "Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate", Journal of Electroanalytical Chemistry 775, 121 (2016). https://doi.org/10.1016/j.jelechem.2016.05.037
  38. I. M. Taylor, et al. "Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes", Biosensors & Bioelectronics 89, 400 (2017). https://doi.org/10.1016/j.bios.2016.05.084
  39. S. R. Teixeira, et al. "Polyaniline-graphene based ${\alpha}$-amylase biosensor with a linear dynamic range in excess of 6 orders of magnitude", Biosensors and Bioelectronics 85, 395 (2016). https://doi.org/10.1016/j.bios.2016.05.034
  40. E. Bayram and E. Akyilmaz, "Development of a new microbial biosensor based on conductive polymer/multiwalled carbon nanotube and its application to paracetamol determination", Sensors and Actuators B-Chemical 233, 409 (2016). https://doi.org/10.1016/j.snb.2016.04.029
  41. H. T. Hien, H. T. Giang, T. Trung, and C. V. Tuan, "Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite", Journal of Materials Science 52, 1694 (2017). https://doi.org/10.1007/s10853-016-0461-z
  42. S. Wu, et al. "Development of glucose biosensors based on plasma polymerization-assisted nanocomposites of polyaniline, tin oxide, and three-dimensional reduced graphene oxide", Applied Surface Science 401, 262 (2017). https://doi.org/10.1016/j.apsusc.2017.01.024
  43. A. Jasim, M. W. Ullah, Z. Shi, X. Lin, and G. Yang, "Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor", Carbohydrate Polymers 163, 62 (2017). https://doi.org/10.1016/j.carbpol.2017.01.056
  44. X. Kan, et al. "Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film", Electrochimica Acta 63, 69 (2012). https://doi.org/10.1016/j.electacta.2011.12.086
  45. P. D. Tam and N. V. Hieu, "Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole", Applied Surface Science 257, 9817 (2011). https://doi.org/10.1016/j.apsusc.2011.06.028
  46. L. Wang, et al. "Highly Sensitive Detection of Quantal Dopamine Secretion from Pheochromocytoma Cells Using Neural Microelectrode Array Electrodeposited with Polypyrrole Graphene", ACS Applied Materials & Interfaces 7, 7619 (2015). https://doi.org/10.1021/acsami.5b00035
  47. N. Chauhan, R. Rawal, V. Hooda, and U. Jain, "Electrochemical biosensor with graphene oxide nanoparticles and polypyrrole interface for the detection of bilirubin", Rsc Advances 6, 63624 (2016). https://doi.org/10.1039/C6RA15671A
  48. L. T. Yang, J. Yang, B. J. Xu, F. Q. Zhao, and B. Z. Zeng, "Facile preparation of molecularly imprinted polypyrrole-graphenemultiwalled carbon nanotubes composite film modified electrode for rutin sensing", Talanta 161, 413 (2016). https://doi.org/10.1016/j.talanta.2016.08.080
  49. D. Ye, L. Luo, Y. Ding, Q. Chen, and X. Liu, "A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode", Analyst 136, 4563 (2011). https://doi.org/10.1039/c1an15486a
  50. N. Ruecha, R. Rangkupan, N. Rodthongkum, and O. Chailapakul, "Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite", Biosensors & Bioelectronics 52, 13 (2014). https://doi.org/10.1016/j.bios.2013.08.018
  51. K. Radhapyari, P. Kotoky, M. R. Das, and R. Khan, "Graphenepolyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids", Talanta 111, 47 (2013). https://doi.org/10.1016/j.talanta.2013.03.020
  52. W. Lei, et al. "Microwave-assisted synthesis of hemingraphene/poly(3,4-ethylenedioxythiophene) nanocomposite for a biomimetic hydrogen peroxide biosensor", Journal of Materials Chemistry B 2, 4324 (2014).
  53. P. M. Nia, W. P. Meng, F. Lorestani, M. R. Mahmoudian, and Y. Alias, "Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor", Sensors and Actuators B-Chemical 209, 100 (2015). https://doi.org/10.1016/j.snb.2014.11.072
  54. K. Xue, et al. "A novel amperometric glucose biosensor based on ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite", Sensors and Actuators B-Chemical 203, 412 (2014). https://doi.org/10.1016/j.snb.2014.07.018
  55. J. Li, et al. "Electrochemical immunosensor based on graphenepolyaniline composites and carboxylated graphene oxide for estradiol detection", Sensors and Actuators B-Chemical 188, 99 (2013). https://doi.org/10.1016/j.snb.2013.06.082
  56. M. M. Barsan, V. Pifferi, L. Falciola, and C. M. A. Brett, "New CNT/poly(brilliant green) and CNT/poly(3,4-ethylenedioxythiophene) based electrochemical enzyme biosensors", Analytica Chimica Acta 927, 35 (2016). https://doi.org/10.1016/j.aca.2016.04.049
  57. G. Orive, E. Anitua, J. L. Pedraz, and D. F. Emerich, "Biomaterials for promoting brain protection, repair and regeneration", Nature Reviews Neuroscience 10, 6825 (2009).
  58. Y. Xiao, X. Ye, L. He, and J. Che, "New carbon nanotubeconducting polymer composite electrodes for drug delivery applications", Polymer International 61, 190 (2012). https://doi.org/10.1002/pi.3168
  59. C. L. Weaver, J. M. LaRosa, X. Luo, and X. T. Cui, "Electrically Controlled Drug Delivery from Graphene Oxide Nanocomposite Films", Acs Nano 8, 1834 (2014). https://doi.org/10.1021/nn406223e
  60. S. F. Cogan, in Annual Review of Biomedical Engineering Vol. 10 Annual Review of Biomedical Engineering 275 (2008).
  61. Y. Nam, "Material considerations for in vitro neural interface technology", Mrs Bulletin 37, 566 (2012). https://doi.org/10.1557/mrs.2012.98
  62. M. A. L. Nicolelis, et al. "Chronic, multisite, multielectrode recordings in macaque monkeys", Proceedings of the National Academy of Sciences of the United States of America 100, 11041 (2003).
  63. A. Goryu, R. Numano, A. Ikedo, M. Ishida, and T. Kawano, "Nanoscale tipped microwire arrays enhance electrical trap and depth injection of nanoparticles", Nanotechnology 23, 415301 (2012). https://doi.org/10.1088/0957-4484/23/41/415301
  64. B. Rubehn, C. Bosman, R. Ostenveld, P. Fries, and T. Stieglitz, "A MEMS-based flexible multichannel ECoG-electrode array", Journal of Neural Engineering 6, 036003 (2009). https://doi.org/10.1088/1741-2560/6/3/036003
  65. L. R. Hochberg, et al. "Neuronal ensemble control of prosthetic devices by a human with tetraplegia", Nature 442, 164 (2006). https://doi.org/10.1038/nature04970
  66. D. R. Kipke, et al. "Advanced Neurotechnologies for Chronic Neural Interfaces: New Horizons and Clinical Opportunities", Journal of Neuroscience 28, 11830 (2008). https://doi.org/10.1523/JNEUROSCI.3879-08.2008
  67. X. Y. Cui and D. C. Martin, "Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays", Sensors and Actuators B-Chemical 89, 92 (2003). https://doi.org/10.1016/S0925-4005(02)00448-3
  68. M. R. Abidian and D. C. Martin, "Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes", Biomaterials 29, 1273 (2008). https://doi.org/10.1016/j.biomaterials.2007.11.022
  69. S. P. Lacour, et al. "Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces", Medical & Biological Engineering & Computing 48, 945 (2010). https://doi.org/10.1007/s11517-010-0644-8
  70. D. H. Kim, et al. "Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics", Nature Materials 9, 511 (2010). https://doi.org/10.1038/nmat2745
  71. D. C. Rodger, et al. "Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording", Sensors and Actuators B-Chemical 132, 449 (2008). https://doi.org/10.1016/j.snb.2007.10.069
  72. S. Negi, R. Bhandari, L. Rieth, R. Van Wagenen, and F. Solzbacher, "Neural electrode degradation from continuous electrical stimulation: Comparison of sputtered and activated iridium oxide", Journal of Neuroscience Methods 186, 8 (2010). https://doi.org/10.1016/j.jneumeth.2009.10.016
  73. Y. Lu, et al. "Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces", Biomaterials 31, 5169 (2010). https://doi.org/10.1016/j.biomaterials.2010.03.022
  74. H. Zhou, X. Cheng, L. Rao, T. Li, and Y. Y. Duan, "Poly(3,4-ethylenedioxythiophene)/multiwall carbon nanotube composite coatings for improving the stability of microelectrodes in neural prostheses applications", Acta Biomaterialia 9, 6439 (2013). https://doi.org/10.1016/j.actbio.2013.01.042
  75. X. Luo, C. L. Weaver, D. D. Zhou, R. Greenberg, and X. T. Cui, "Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation", Biomaterials 32, 5551 (2011). https://doi.org/10.1016/j.biomaterials.2011.04.051
  76. Kolarcik, Christi L., et al. "Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion", Journal of Neural Engineering 12, 016008 (2015). https://doi.org/10.1088/1741-2560/12/1/016008
  77. X. Luo, C. L. Weaver, S. Tan, and X. T. Cui, "Pure graphene oxide doped conducting polymer nanocomposite for bio-interfacing", Journal of Materials Chemistry B 1, 1340 (2013). https://doi.org/10.1039/c3tb00006k
  78. H.-C. Tian, et al. "Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface". Biomaterials 35, 2120 (2014). https://doi.org/10.1016/j.biomaterials.2013.11.058
  79. T. Hong-Chang, et al. in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. 1571.
  80. T. D. Y. Kozai, et al. "Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings", Ieee Transactions on Biomedical Engineering 63, 111 (2016). https://doi.org/10.1109/TBME.2015.2445713
  81. C. T. Chen, et al. "Biointerface by Cell Growth on Graphene Oxide Doped Bacterial Cellulose/Poly(3,4-ethylenedioxythiophene) Nanofibers", Acs Applied Materials & Interfaces 8, 10183 (2016). https://doi.org/10.1021/acsami.6b01243
  82. L. Yan, et al. "Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation", Acs Applied Materials & Interfaces 8, 6834 (2016). https://doi.org/10.1021/acsami.5b12843
  83. X. Yang, et al. "Superparamagnetic graphene oxide-$Fe_3O_4$ nanoparticles hybrid for controlled targeted drug carriers", Journal of Materials Chemistry 19, 2710 (2009). https://doi.org/10.1039/b821416f
  84. Z. Liu, J. T. Robinson, X. Sun, and H. Dai, "PEGylated nanographene oxide for delivery of water-insoluble cancer drugs", Journal of the American Chemical Society 130, 10876 (2008). https://doi.org/10.1021/ja803688x