DOI QR코드

DOI QR Code

Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea

  • Choi, Byung-Kyu (Space Geodesy Group, Korea Astronomy and Space Science Institute) ;
  • Cho, Chang-Hyun (Space Geodesy Group, Korea Astronomy and Space Science Institute) ;
  • Lee, Sang Jeong (Department of Electronics Engineering, Chungnam National University)
  • Received : 2017.01.13
  • Accepted : 2017.02.08
  • Published : 2017.03.15

Abstract

Precise Point Positioning (PPP) method is based on dual-frequency data of Global Navigation Satellite Systems (GNSS). The recent multi-constellations GNSS (multi-GNSS) enable us to bring great opportunities for enhanced precise positioning, navigation, and timing. In the paper, the multi-GNSS PPP with a combination of four systems (GPS, GLONASS, Galileo, and BeiDou) is analyzed to evaluate the improvement on positioning accuracy and convergence time. GNSS observations obtained from DAEJ reference station in South Korea are processed with both the multi-GNSS PPP and the GPS-only PPP. The performance of multi-GNSS PPP is not dramatically improved when compared to that of GPS only PPP. Its performance could be affected by the orbit errors of BeiDou geostationary satellites. However, multi-GNSS PPP can significantly improve the convergence speed of GPS-only PPP in terms of position accuracy.

Acknowledgement

Grant : Operation of the Space Geodetic Infra-facilities and Research on Astronomical Almanac

Supported by : Korea Astronomy and Space Science Institute

References

  1. Boehm, J., Niell, A., Tregoning, P., & Schuh, H. 2006, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 33, L07304. http://dx.doi.org/10.1029/2005GL025546
  2. Cai, C. & Gao, Y. 2013, Modeling and assessment of combined GPS/ GLONASS precise point positioning, GPS Solutions, 17, 223-236. http://dx.doi.org/10.1007/s10291-012-0273-9 https://doi.org/10.1007/s10291-012-0273-9
  3. Chen, J., Zhang, Y., Wang, J., Yang, S, Dong, D., et al. 2015, A simplified and unified model of multi-GNSS precise point positioning, ASR, 55, 125-134, http://dx.doi.org/10.1016/j.asr.2014.10.002 https://doi.org/10.1016/j.asr.2014.10.002
  4. Choi, B., Roh, K., & Lee, S. 2014, Development of a Combined GPS/GLONASS PPP Method, JPNT, 3, 31-36, http://dx.doi.org/10.11003/JPNT.2014.3.1.031
  5. Dach, R., Brockmann, E., Schaer, S., Gerhard, B., Michael, M., et al. 2009, GNSS processing at CODE: status report, J. Geod. 83, 353-365, http://dx.doi.org/10.1007/s00190-008-0281-2 https://doi.org/10.1007/s00190-008-0281-2
  6. Elmas, Z. G., Aquino, M., Marques, H. A., & Monico, J. F. G. 2011, Higher order ionospheric effects in GNSS positioning in the European region, Ann. Geophys., 29, 1383-1399. http://dx.doi.org/10.5194/angeo-29-1383-2011 https://doi.org/10.5194/angeo-29-1383-2011
  7. Gao, Y. & Shen, X. 2002, A New Method for Carrier-Phase-Based Precise Point Positioning, Journal of the Institute of Navigation, 49, 109-116. http://dx.doi.org/10.1002/j.2161-4296.2002.tb00260.x https://doi.org/10.1002/j.2161-4296.2002.tb00260.x
  8. Geng, J., Meng, X., Dodson, A. H., & Teferle, F. N. 2010, Integer ambiguity resolution in precise point positioning: method comparison, Journal of Geodesy, 84, 569-581. http://dx.doi.org/10.1007/s00190-010-0399-x https://doi.org/10.1007/s00190-010-0399-x
  9. Kouba, J. & Heroux, P. 2001, Precise Point Positioning Using IGS orbit and Clock products, GPS Solutions, 5, 12-28. http://dx.doi.org/10.1007/PL00012883 https://doi.org/10.1007/PL00012883
  10. Lagler, K., Schindelegger, M., Bohm, J., Krasna, H., & Nisson, T. 2013, GPT2: empirical slant delay model for radio space geodetic techniques, GRL, 40, 1069-1073. http://dx.doi.org/10.1002/grl.50288 https://doi.org/10.1002/grl.50288
  11. Li, P. & Zhang, X. 2015, Precise Point Positioning with Partial Ambiguity Fixing, Sensors, 15, 13627-13643. http://dx.doi.org/10.3390/s150613627 https://doi.org/10.3390/s150613627
  12. Li, X, Zhang, X., Ren, X., Fritsche, M., Wickert, J., et al. 2015, Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou, Sci. Rep., 5, 8328, http://dx.doi.org/10.1038/srep08328 https://doi.org/10.1038/srep08328
  13. Lu, C., Li, X., Li, Z., Heinkelmann, R., Nilsson, T., et al. 2016, GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning, J. Geophys. Res.-Atmos., 121, 912-930. http://dx.doi.org/10.1002/2015JD024255 https://doi.org/10.1002/2015JD024255
  14. Melgard, T., Vigen, E., de Jong, K., Lapucha, D., Visser, H., et al. 2009, G2- the first real-time GPS and GLONASS precise orbit and clock service, in Proceedings of ION GNSS 2009, Sept 22-25, Savannah, GA, pp.1885-1891. https://www.ion.org/publications/abstract.cfm?articleID=8596
  15. Odijk, D. 2003, Ionospheric-Free Phase Combinations for Modernized GPS, Journal of Surveying Engineering, 129, 165-173. http://dx.doi.org/10.1061/(ASCE)0733-9453(2003)129:4(165)#sthash.csm28GD7.dpuf https://doi.org/10.1061/(ASCE)0733-9453(2003)129:4(165)
  16. Rabbou, M. A. 2015, Multiple Ambiguity Datum Precise Point Positioning Technique Using Multi-Constellation GNSS: GPS, GLONASS, Galileo and BeiDou, Positioning, 6, 32-43. http://dx.doi.org/10.4236/pos.2015.63004 https://doi.org/10.4236/pos.2015.63004
  17. Ren, X., Choy, S., Harima, K., & Zhang, X. 2015, Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia, in Proceedings of IGNSS Symposium, New South Wales, Australia, 14-16 July 2015, pp.1-13.
  18. Saastamoinen, J. 1973, Contributions to the theory of atmospheric refraction - Part II. Refraction corrections in satellite geodesy, J. Geod., 47, 13-34. http://dx.doi.org/10.1007/BF02522083
  19. Seepersad, G. & Bisnath, S. 2014, Challenges in Assessing PPP Performance, Journal of Applied Geodesy, 8, 205-222. http://dx.doi.org/10.1515/jag-2014-0008
  20. Tan, B., Yuan, Y., Wen, M., Ning, Y., & Liu, X. 2016, Initial Results of the Precise Orbit Determination for the New-Generation BeiDou Satellite (BeiDou-3) Based on the iGMAS Network, International Journal of Geo-Information, 5, 196-208. http://dx.doi.org/10.3390/ijgi5110196 https://doi.org/10.3390/ijgi5110196
  21. Wu, J., Wu, S., Hajj, G., Bertiger, W., & Lichten, S. 1993, Effects of antenna orientation on GPS carrier phase, Manuscripta Geodaetica, 18, 91-98.
  22. Zhang, X. & Andersen, O. 2006, Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning, J. Geodesy, 80, 171-176. http://dx.doi.org/10.1007/s00190-006-0062-8 https://doi.org/10.1007/s00190-006-0062-8
  23. Zumberge, J., Heflin, M., Jefferson, D., Watkins, M, & Webb, F. 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks, JGR, 102, 5005-5017. http://dx.doi.org/10.1029/96JB03860 https://doi.org/10.1029/96JB03860