Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea

  • Choi, Byung-Kyu (Space Geodesy Group, Korea Astronomy and Space Science Institute) ;
  • Cho, Chang-Hyun (Space Geodesy Group, Korea Astronomy and Space Science Institute) ;
  • Lee, Sang Jeong (Department of Electronics Engineering, Chungnam National University)
  • Received : 2017.01.13
  • Accepted : 2017.02.08
  • Published : 2017.03.15


Precise Point Positioning (PPP) method is based on dual-frequency data of Global Navigation Satellite Systems (GNSS). The recent multi-constellations GNSS (multi-GNSS) enable us to bring great opportunities for enhanced precise positioning, navigation, and timing. In the paper, the multi-GNSS PPP with a combination of four systems (GPS, GLONASS, Galileo, and BeiDou) is analyzed to evaluate the improvement on positioning accuracy and convergence time. GNSS observations obtained from DAEJ reference station in South Korea are processed with both the multi-GNSS PPP and the GPS-only PPP. The performance of multi-GNSS PPP is not dramatically improved when compared to that of GPS only PPP. Its performance could be affected by the orbit errors of BeiDou geostationary satellites. However, multi-GNSS PPP can significantly improve the convergence speed of GPS-only PPP in terms of position accuracy.


Grant : Operation of the Space Geodetic Infra-facilities and Research on Astronomical Almanac

Supported by : Korea Astronomy and Space Science Institute


  1. Boehm, J., Niell, A., Tregoning, P., & Schuh, H. 2006, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 33, L07304.
  2. Cai, C. & Gao, Y. 2013, Modeling and assessment of combined GPS/ GLONASS precise point positioning, GPS Solutions, 17, 223-236.
  3. Chen, J., Zhang, Y., Wang, J., Yang, S, Dong, D., et al. 2015, A simplified and unified model of multi-GNSS precise point positioning, ASR, 55, 125-134,
  4. Choi, B., Roh, K., & Lee, S. 2014, Development of a Combined GPS/GLONASS PPP Method, JPNT, 3, 31-36,
  5. Dach, R., Brockmann, E., Schaer, S., Gerhard, B., Michael, M., et al. 2009, GNSS processing at CODE: status report, J. Geod. 83, 353-365,
  6. Elmas, Z. G., Aquino, M., Marques, H. A., & Monico, J. F. G. 2011, Higher order ionospheric effects in GNSS positioning in the European region, Ann. Geophys., 29, 1383-1399.
  7. Gao, Y. & Shen, X. 2002, A New Method for Carrier-Phase-Based Precise Point Positioning, Journal of the Institute of Navigation, 49, 109-116.
  8. Geng, J., Meng, X., Dodson, A. H., & Teferle, F. N. 2010, Integer ambiguity resolution in precise point positioning: method comparison, Journal of Geodesy, 84, 569-581.
  9. Kouba, J. & Heroux, P. 2001, Precise Point Positioning Using IGS orbit and Clock products, GPS Solutions, 5, 12-28.
  10. Lagler, K., Schindelegger, M., Bohm, J., Krasna, H., & Nisson, T. 2013, GPT2: empirical slant delay model for radio space geodetic techniques, GRL, 40, 1069-1073.
  11. Li, P. & Zhang, X. 2015, Precise Point Positioning with Partial Ambiguity Fixing, Sensors, 15, 13627-13643.
  12. Li, X, Zhang, X., Ren, X., Fritsche, M., Wickert, J., et al. 2015, Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou, Sci. Rep., 5, 8328,
  13. Lu, C., Li, X., Li, Z., Heinkelmann, R., Nilsson, T., et al. 2016, GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning, J. Geophys. Res.-Atmos., 121, 912-930.
  14. Melgard, T., Vigen, E., de Jong, K., Lapucha, D., Visser, H., et al. 2009, G2- the first real-time GPS and GLONASS precise orbit and clock service, in Proceedings of ION GNSS 2009, Sept 22-25, Savannah, GA, pp.1885-1891.
  15. Odijk, D. 2003, Ionospheric-Free Phase Combinations for Modernized GPS, Journal of Surveying Engineering, 129, 165-173.
  16. Rabbou, M. A. 2015, Multiple Ambiguity Datum Precise Point Positioning Technique Using Multi-Constellation GNSS: GPS, GLONASS, Galileo and BeiDou, Positioning, 6, 32-43.
  17. Ren, X., Choy, S., Harima, K., & Zhang, X. 2015, Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia, in Proceedings of IGNSS Symposium, New South Wales, Australia, 14-16 July 2015, pp.1-13.
  18. Saastamoinen, J. 1973, Contributions to the theory of atmospheric refraction - Part II. Refraction corrections in satellite geodesy, J. Geod., 47, 13-34.
  19. Seepersad, G. & Bisnath, S. 2014, Challenges in Assessing PPP Performance, Journal of Applied Geodesy, 8, 205-222.
  20. Tan, B., Yuan, Y., Wen, M., Ning, Y., & Liu, X. 2016, Initial Results of the Precise Orbit Determination for the New-Generation BeiDou Satellite (BeiDou-3) Based on the iGMAS Network, International Journal of Geo-Information, 5, 196-208.
  21. Wu, J., Wu, S., Hajj, G., Bertiger, W., & Lichten, S. 1993, Effects of antenna orientation on GPS carrier phase, Manuscripta Geodaetica, 18, 91-98.
  22. Zhang, X. & Andersen, O. 2006, Surface ice flow velocity and tide retrieval of the amery ice shelf using precise point positioning, J. Geodesy, 80, 171-176.
  23. Zumberge, J., Heflin, M., Jefferson, D., Watkins, M, & Webb, F. 1997, Precise point positioning for the efficient and robust analysis of GPS data from large networks, JGR, 102, 5005-5017.