DOI QR코드

DOI QR Code

차량-궤도 상호작용 해석을 통한 사전 제작형 플로팅 슬래브 궤도의 동적 안정성 검토

Evaluation of Dynamic Stability of Precast Floating Slab Track with Vehicle-Track Interaction Analysis

  • 장동두 (한국철도기술연구원 스마트역사연구팀) ;
  • 김진호 (한국철도기술연구원 스마트역사연구팀) ;
  • 권세곤 (한국철도공사)
  • Jang, Dongdoo (Smart Station Research Team, Korea Railroad Research Institute) ;
  • Kim, Jin-Ho (Smart Station Research Team, Korea Railroad Research Institute) ;
  • Kwon, Se-Gon (Research Institute, Korail)
  • 투고 : 2017.02.22
  • 심사 : 2017.03.10
  • 발행 : 2017.03.31

초록

기존 선하역사의 소음 및 진동 문제를 해결하기 위해 제안된 사전 제작형 플로팅 슬래브 궤도는 길이 5m 정도의 슬래브 패널을 공장에서 제작하고 방진장치를 설치하여 일체화한 궤도이다. 이를 통해 별도의 열차 운행 중단 없이 급속 시공이 가능하여 신설역사 뿐 아니라 기존 선하 역사에 적용이 가능한 장점이 있다. 그러나 패널 길이가 5m로 짧아 실제 시공 구간 길이에 따라 다수의 패널이 설치되어야 함에 따라 궤도의 불연속 구간이 많이 발생한다. 또한 플로팅 슬래브 궤도의 작동 원리 상 일반 궤도에 비해 차량 운행으로 인한 과도한 변위가 발생할 여지가 있고 기존 궤도와의 접속부에서의 지지강성 차이로 인해 동적 불안정성이 발생할 우려가 있다. 본 연구에서는 사전 제작형 플로팅 슬래브 궤도에 대해 차량-궤도 상호작용 해석을 수행하여 윤중변동율, 차체가속도, 레일응력 및 상압력의 검토를 통해 동적 안정성을 확인하였다. 검토 결과 플로팅 궤도 구간 내에서의 동적 안정성은 확보하는 것으로 나타났지만 기존 궤도와의 접속부에서는 일부 기준을 초과하는 것으로 나타나 이를 해소하기 위한 방진장치 배치 방안을 제시하였다.

과제정보

연구 과제 주관 기관 : 국토교통부

참고문헌

  1. H. G. Wagner, "Attenuation of transmission of vibrations and ground-borne noise by means of steel spring supported low-tuned floating track-beds", 2002 World Metro Symposium, Taipei, 2002.
  2. F. Cui, C. H. Chew, "The effectiveness of floating slab track system-Part 1. receptance methods", Applied Acoustics, vol. 61, pp. 441-453, 2000. DOI: https://doi.org/10.1016/S0003-682X(00)00014-1 https://doi.org/10.1016/S0003-682X(00)00014-1
  3. C. M. Kuo, C. H. Huang, Y. Y. Chen, "Vibration characteristics of floating slab track", Journal of Sound and Vibration, vol. 317, pp. 1017-1034, 2008. DOI: https://doi.org/10.1016/j.jsv.2008.03.051 https://doi.org/10.1016/j.jsv.2008.03.051
  4. Y. S. Jang, I. W. Lee, Y. S. Kang, "Track system technology for future advanced railway construction", KSCE Magazine, vol. 61, no. 9, pp. 41-51, 2013.
  5. Y. S. Koh, Y. S. Ji, H. S. Choi, S. H. Choi, "Optimum Design Property Estimation of the Precast Floting Track System for Vibration Reduction", Journal of Society of Hazard Mititigation, vol. 16, no. 2, pp. 69-76, 2016. DOI: https://doi.org/10.9798/KOSHAM.2016.16.2.69
  6. S. Y. Jang, S. C. Yang, "Assessment of train running safety, ride comfort and track serviceability at transition between floating slab track and conventional concrete track", Journal of the Korean Society for Railway, vol. 15, no. 1, pp. 48-61, 2012. DOI: https://doi.org/10.7782/JKSR.2012.15.1.048 https://doi.org/10.7782/JKSR.2012.15.1.048
  7. Standards for railway vehicle safety criteria, Ministry of Land, Infrastructure, and Transport, 2013.
  8. Design Standards for Railway Structures and Commentary-Limit for displacement, Railway Technology Research, 2006.
  9. A. Namura, K. Matsuo, S. Miura, Introduction of buffers into a transitional track stiffness region, RTRI report, vol. 11, no. 2, pp. 39-42, 1997.
  10. S. C. Yang, M. C. Kim, J. S. Kim, "Prediction of bending fatigue limits of rail welded parts", Journal of the Korean Society of Civil Engineers, vol. 20, no. 1-D, pp. 97-106, 2000.
  11. C. Esveld, Modern Railway Track, 3rd ed., MRT productions, 2001.
  12. S. C. Yang, "Enhancement of the finite-element method for the analysis of vertical train-track inter-actions", Proc. of IMechE Part F: J. Rail and Rapid Transit, vol. 223, pp. 609-620, 2009. DOI: https://doi.org/10.1243/09544097JRRT285 https://doi.org/10.1243/09544097JRRT285
  13. M. C. Kim, "Development of a quasi-three dimensional train/track/bridge interaction analysis program for evaluating dynamic characteristics of high speed railway bridge", Journal of Computational Structural Engineering Institute of Korea, vol. 16, no. 2, pp. 141-151, 2003.
  14. H. U. Lee, A Study on the Analysis of Dynamic Behavior and Performance Evaluation Test of SCP Bridge, Korea Railroad Research Institute, Shin-Sung Engineering & Construction Co., 2006.