DOI QR코드

DOI QR Code

Diamond Schottky Barrier Diodes With Field Plate

필드 플레이트가 설계된 다이아몬드 쇼트키 장벽 다이오드

  • Chang, Hae Nyung (Dept. of Electrical Engineering, Myongji University) ;
  • Kang, Dong-Won (Dept. of Solar & Energy Engineering, Cheongju University) ;
  • Ha, Min-Woo (Dept. of Electrical Engineering, Myongji University)
  • Received : 2017.02.19
  • Accepted : 2017.03.23
  • Published : 2017.04.01

Abstract

Power semiconductor devices required the low on-resistance and high breakdown voltage. Wide band-gap materials opened a new technology of the power devices which promised a thin drift layer at an identical breakdown voltage. The diamond had the wide band-gap of 5.5 eV which induced the low power loss, high breakdown capability, low intrinsic carrier generation, and high operation temperature. We investigated the p-type pseudo-vertical diamond Schottky barrier diodes using a numerical simulation. The impact ionization rate was material to calculating the breakdown voltage. We revised the impact ionization rate of the diamond for adjusting the parallel-plane breakdown field at 10 MV/cm. Effects of the field plate on the breakdown voltage was also analyzed. A conventional diamond Schottky barrier diode without field plate exhibited the high forward current of 0.52 A/mm and low on-resistance of $1.71{\Omega}-mm$ at the forward voltage of 2 V. The simulated breakdown field of the conventional device was 13.3 MV/cm. The breakdown voltage of the conventional device and proposed devices with the $SiO_2$ passivation layer, anode field plate (AFP), and cathode field plate (CFP) was 680, 810, 810, and 1020 V, respectively. The AFP cannot alleviate the concentration of the electric field at the cathode edge. The CFP increased the breakdown voltage with evidences of the electric field and potential. However, we should consider the dielectric breakdown because the ideal breakdown field of the diamond is higher than that of the $SiO_2$, which is widely used as the passivation layer. The real breakdown voltage of the device with CFP decreased from 1020 to 565 V due to the dielectric breakdown.

Acknowledgement

Supported by : 명지대학교

References

  1. B. J. Baliga, "Power semiconductor devices", PWS publishing company, 1996.
  2. B. J. Baliga, "The future of power semiconductor device technology", Proc. IEEE, Vol. 89. No. 6, June, pp. 822-832, June 2001. https://doi.org/10.1109/5.931471
  3. J. W. Palmour et al., "Silicon carbide power MOSFETs: breakthrough performance from 900 V up to 15 kV", Proc. Int. Symp. Power Semiconductor Devices & ICs, pp. 79-82, June 2014.
  4. K. Choi et al., KIEE Summer Conf., pp. 1137-1138, July 2016.
  5. Y. J. Jo, J. H. Moon, O. Seok, W. Bahng, T. J. Park, and M.-W. Ha, "Electrical characteristics of $SiO_2$/4H-SiC metal-oxide-semiconductor capacitors with lowtemperature atomic layer deposited $SiO_2$", J. Semicond. Technol. Sci., April 2017.
  6. M.-W. Ha et al., "A dual gate AlGaN/GaN high electron mobility transistor with high breakdown voltages", Trans. KIEE, Vol. 54C, No. 1, pp. 18-22, Jan. 2005.
  7. M. Kim, O. Seok, M.-K. Han, and M.-W. Ha, "Highvoltage AlGaN/GaN high-electron-mobility transistors using thermal oxidation for $NiO_x$ passivation", J. Electr. Eng. Technology., Vol. 8, No. 5, pp. 1157-1162, 2013. https://doi.org/10.5370/JEET.2013.8.5.1157
  8. M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, "GaN on Si technologies for power switching devices", IEEE Trans. Electron Devices, Vol. 60, No. 10, pp. 3053-3059, Oct. 2013. https://doi.org/10.1109/TED.2013.2268577
  9. J. Isberg, et al., "High carrier mobility in single-crystal plasma-deposited diamond", Science, Vol. 297, pp. 1670-1672, Sep. 2002. https://doi.org/10.1126/science.1074374
  10. Y. Gurbuz et al., "Diamond semiconductor technology for RF device applications", Solid-State Electron., Vol. 49. pp. 1055-1070, 2005. https://doi.org/10.1016/j.sse.2005.04.005
  11. A. Aleksov et al., "Diamond-based electronics for RF applications", Diamond Relat. Mater., Vol. 13, pp. 233-240, 2004. https://doi.org/10.1016/j.diamond.2003.11.090
  12. A. Denisenko and E. Kohn, "Diamond power devices. Concepts and limits", Diamond Relat. Mater., Vol. 14, pp. 491-498, 2005. https://doi.org/10.1016/j.diamond.2004.12.043
  13. C. J. H. Wort and R. S. Balmer, "Diamond as an electronic material", Materials today, Vol. 11, No. 1-2, pp. 22-28, Jan. 2008. https://doi.org/10.1016/S1369-7021(07)70349-8
  14. K. Ikeda et al., "Fabrication of a field plate structure for diamond Schottky barrier diodes", Diamond Relat. Mater., Vol. 18, pp. 292-295, 2009. https://doi.org/10.1016/j.diamond.2008.10.021
  15. R. Kumaresan et al., "Device processing, fabrication and analysis of diamond pseudo-vertical Schottky barrier diodes with low leak current and high blocking voltage", Diamond Relat. Mater., Vol. 18, pp. 299-302, 2009. https://doi.org/10.1016/j.diamond.2008.10.055
  16. H. Umezawa, M. Nagase, Y. Kato, and S. Shikata, "High temperature application of diamond power device", Diamond Relat. Mater., Vol. 24, pp. 201-205, 2012. https://doi.org/10.1016/j.diamond.2012.01.011
  17. G. Chicot, D. Eon, and N. Rouger, "Optimal drift region for diamond power devices", Diamond Relat. Mater., Vol. 14, pp. 68-73, 2016.
  18. H. N. Chang, et al., "Next-generation high-power diamond Schottky barrier diode", KIEE Summer Conf., pp. 1130-1131, July 2016.
  19. Atlas version 5.20.2.R, Silvaco.
  20. F. Conti and M. Conti, "Surface breakdown in silicon planar diodes equipped with field plate", Solid-State Electron., Vol. 15, No. 1, pp. 93-105, Jan. 1972. https://doi.org/10.1016/0038-1101(72)90070-6
  21. H. B. Michaelson, "The work function of the elements and its periodicity", J. Appl. Phys., Vol. 48, No. 11, pp. 4729-4733, Nov. 1977. https://doi.org/10.1063/1.323539
  22. D. K. Schroder, "Semiconductor material and device characterization", John Wiley & Sons, Inc., New York, 1998.
  23. S. Selberherr, "Analysis and simulation of semiconductor devices", Springer-Verlag, Wien, 1984.
  24. J. Isberg, M. Gabrysch, A. Tajani, and D. J. Twitchen, "High-field electrical transport in single crystal CVD diamond diodes", Adv. Sci. Technol., Vol. 48, pp. 73-76, 2006. https://doi.org/10.4028/www.scientific.net/AST.48.73
  25. R. J. Trew, J.-B. Yan, and P. M. Mock, "The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications", Proc. IEEE, Vol. 79, No. 5, pp. 598-620, May 1991. https://doi.org/10.1109/5.90128
  26. A. Hiraiwa and H. Kawarada, "Blocking characteristics of diamond junctions with a punch-through design", J. Appl. Phys., Vol. 117, pp. 124503, 2015. https://doi.org/10.1063/1.4916240
  27. S. J. Rashid et al., "Numerical parameterization of chemical-vapor-deposited(CVD) single-crystal diamond for device simulation and analysis", IEEE Trans. Electron Devices, Vol. 55, No. 10, pp. 2744-2756, Oct. 2008. https://doi.org/10.1109/TED.2008.2003225
  28. D.-W. Kang, H. N. Chang, and M.-W. Ha, "Numerical simulation of high-voltage diamond Schottky barrier diodes", Proc. Microprocesses Nanotechnol. Conf., 10P-7-18, Nov. 2016.