Simultaneous Planning of Renewable/ Non-Renewable Distributed Generation Units and Energy Storage Systems in Distribution Networks

  • Received : 2016.09.05
  • Accepted : 2016.11.19
  • Published : 2017.04.25


The increased diversity of different types of energy sources requires moving towards smart distribution networks. This paper proposes a probabilistic DG (distributed generation) units planning model to determine technology type, capacity and location of DG units while simultaneously allocating ESS (energy storage systems) based on pre-determined capacities. This problem is studied in a wind integrated power system considering loads, prices and wind power generation uncertainties. A suitable method for DG unit planning will reduce costs and improve reliability concerns. Objective function is a cost function that minimizes DG investment and operational cost, purchased energy costs from upstream networks, the defined cost to reliability index, energy losses and the investment and degradation costs of ESS. Electrical load is a time variable and the model simulates a typical radial network successfully. The proposed model was solved using the DICOPT solver under GAMS optimization software.



  1. E. Denny and M. O’Malley, IEEE Trans. Power Syst., 21, 341 (2006). [DOI:]
  2. C. Kahraman, I. Kaya, and S. Cebi, Energy, 34, 1603e16 (2009).
  3. T. Ackermann, G. Andersson, and L. Soder, Elect. Power Syst. Res., 57, 195 (2001). [DOI:]
  4. N. Hadjsaid, J. F. Canard, and F. Dumas, IEEE Comput. Appl. Power, 12, 22 (1999). [DOI:]
  5. H. Ibrahim, A. Ilinca, and J. Perron, Renewable and Sustainable Energy Reviews, 12, 1221 (2007). [DOI:]
  6. I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, Renewable and sustainable energy reviews, 13, 1513 (2009). [DOI:]
  7. A. Mouti, S. Fahad, and M.E.E. Hawary, IEEE Trans. Power Deliv., 26, 2090 (2011). [DOI:]
  8. R. Jabr and B. Pal, IET Gener. Transm. Distrib., 3, 713 (2009). [DOI:]
  9. K. Nekooei, M. M. Farsangi, N. H. Pour, and K. Y. Lee, IEEE Trans. Smart Grid., 4, 557 (2013). [DOI:]
  10. K. H. Kim, K. B. Song, S. K. Joo, Y. J. Lee, and J. O. Kim, Eur. Trans. Electr. Power, 18, 217 (2008). [DOI:]
  11. M. Ettehadi, H. Ghasemi, and S. V. Zadeh, IEEE Trans. Power Deliv., 28, 171 (2013). [DOI:]
  12. H. Hedayati, S. Nabaviniaki, and A. Akbarimajd, IEEE Trans. Power Deliv., 23, 1620 (2008). [DOI:]
  13. A. S. Algarni and K. Bhattacharya, IEEE Trans. Power Syst., 24, 1831 (2009). [DOI:]
  14. D. Zhu, R. P. Broadwater, K. S. Tam, R. Seguin, and H. Asgeirsson, IEEE Trans. Power Syst., 21, 419 (2006). [DOI:]
  15. K. C. Divya and J. Ostergaard, Electric Power Syst. Res., 79, 511 (2009). [DOI:]
  16. J. P. Barton and D. G. Infield, IEEE Trans. Energy Conversion, 19, 441 (2004). [DOI:]
  17. Y. M. Atwa and E.F.E. Saadany, IEEE Trans. Power Syst., 25, 1815 (2010). [DOI:]
  18. S. Grillo, M. Marinelli, S. Massucco, and F. Silvestro, IEEE Trans. Smart Grid, 3, 950 (2012). [DOI:]
  19. S. Carr, C. P. Giuliano, A. J. Guwy, R. M. Dinsdale, and J. Maddy, IET Renewable Power Generation, 8, 249 (2014). [DOI:]
  20. S. Abapour, K. Zare, and B. M. Ivatloo, IET Generation, Transmission & Distribution, 9, 1455 (2015). [DOI:]
  21. S. Abapour, K. Zare, and B. M. Ivatloo, IET Gener. Transm. Distrib., 8, 609 (2014). [DOI: 2013.0666]
  22. M. Abbaspour, M. Satkin, B. M. Ivatloo, F. H. Lotfi, and Y. Noorollahi, Renewable Energy, 51, 53 (2013). [DOI:]
  23. N. Khalesi, N. Rezaei, and M. R. Haghifam, International Journal of Electrical Power & Energy Systems, 33, 288 (2011). [DOI:]
  24. J. P. Barton and D. G. Infield, IEEE Trans. Energy Conversion, 19, 441 (2004). [DOI:]
  25. D. T. Nguyen and L. B. Le, IEEE Transactions on Smart Grid, 5, 1608 (2014). [DOI:]
  26. S.M.M. Bonab, A. Rabiee, and B. M. Ivatloo, Renewable Energy, 85, 598 (2016). [DOI:]
  27. The GAMS Software Website, (2015).