DOI QR코드

DOI QR Code

Determination of volatile compounds by headspace-solid phase microextraction - gas chromatography / mass spectrometry: Quality evaluation of Fuji apple

  • Lee, Yun-Yeol ;
  • Jeong, Moon-Cheol ;
  • Jang, Hae Won
  • Received : 2017.02.02
  • Accepted : 2017.02.21
  • Published : 2017.04.25

Abstract

The volatile components in 'Fuji' apple were effectively determined by a headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 48 volatile components were identified and tentatively characterized based on National Institute of Standards and Technology (NIST) MS spectra library and the Kovats GC retention index I (RI). The harvested Fuji apples were divided into two groups: 1-methylcyclopropene (1-MCP) treated and non-treated (control) samples for finding important indicators between two groups. The major volatile components of both apples were 2-methylbutyl acetate, hexyl acetate, butyl 2-methylbutanoate, hexyl butanoate, hexyl 2-methylbutanoate, hexyl hexanoate and farnesene. No significant differences of these major compounds between 1-MCP treated and non-treated apples were observed during 1 month storage. Interestingly, the amount of off-flavors, including 1-butanol and butyl butanoate, in 1-MCP treated apples decreased over 5 months, and then increased after 7 months. However, non-treated apples did not show significant changes for off-flavors during 7 month storage (p<0.05). The non-treated apples also contained the higher levels of two off-flavors than 1-MCP treated apples. These two compounds, 1-butanol and butyl butanoate, can be used as quality indicators for the quality evaluation of Fuji apple.

Keywords

Fuji apples;volatile compounds;off-flavors;HS-SPME/GC-MS

References

  1. I. Lara, J. Graell, M. L. Lopez and G. Echeverria, Postharvest Biol. Technol., 39(1), 19-28 (2006). https://doi.org/10.1016/j.postharvbio.2005.09.001
  2. S. F. A. R. Reis, S. M. Rocha, A. S. Barros, I. Delgadillo, and M. a. Coimbra, Food Chem., 113(2), 513-521 (2009). https://doi.org/10.1016/j.foodchem.2008.07.093
  3. L. Dur and E. Costell, Food Sci. Tech. Int., 5(4), 299- 309 (1999). https://doi.org/10.1177/108201329900500402
  4. G. Echeverria, T. Fuentes, J. Graell, I. Lara, and M. L. Lopez, Postharvest Biol. Technol., 32(1), 29-44 (2004). https://doi.org/10.1016/j.postharvbio.2003.09.017
  5. G. Echeverria, M. T. Fuentes, J. Graell, M. L. Lopez, and J. Puy, J. Sci. Food Agric., 84(1), 5-20 (2004). https://doi.org/10.1002/jsfa.1554
  6. H. Young, K. Rossiter, M. Wang, and M. Miller, J. Agric. Food Chem., 47(12), 5173-5177 (1999). https://doi.org/10.1021/jf990276u
  7. G. Echeverria, J. Graell, M. L. Lopez, and I. Lara, Postharvest Biol. Technol., 31(3), 217-227 (2004). https://doi.org/10.1016/j.postharvbio.2003.09.003
  8. J. Dixon and E. W. Hewett, New Zeal. J. Crop Hortic. Sci., 28(3), 155-173 (2000). https://doi.org/10.1080/01140671.2000.9514136
  9. A. B. Marin, A. E. Colonna, K. Kudo, E. M. Kupferman, and J. P. Mattheis, Postharvest Biol. Technol., 51(1), 73-79 (2009). https://doi.org/10.1016/j.postharvbio.2008.06.008
  10. N. A. Mir, E. Curell, N. Khan, M. Whitaker, and R. M. Beaudry, J. Amer. Soc. Hort. Sci., 126(5), 618-624 (2001).
  11. J. Bai, E. A. Baldwin, K. L. Goodner, J. P. Mattheis, and J. K. Brecht, Hort Science, 40(5), 1534-1538 (2005).
  12. C. B. Watkins, J. F. Nock, and B. D. Whitaker, Postharvest Biol. Technol., 19(1), 17-32 (2000). https://doi.org/10.1016/S0925-5214(00)00070-3
  13. J. Bai, W. Haven, and J. K. Brecht, J. Amer. Soc. Hort. Sci., 129(4), 583-593 (2004).
  14. A. Rizzolo and A. Polesello, J. High Res. Chrom., 12(12), 824-827 (1989). https://doi.org/10.1002/jhrc.1240121214
  15. L. López, T. Lavilla, I. Recasens, M. Riba, and M. Vendrell, J. Agric. Food Chem., 46(2), 634-643 (1998). https://doi.org/10.1021/jf9608938
  16. Q. L. Ma, N. Hamid, A. E. D. Bekhit, J. Robertson, and T. F. Law, Microchem. J., 111, 16-24 (2013). https://doi.org/10.1016/j.microc.2012.10.007
  17. J. Song, B. Gardener, J. Holland, and R. Beaudry, J. Agric. Food Chem., 45(5), 1801-1807 (1997). https://doi.org/10.1021/jf9608229
  18. S. Saevels, J. Lammertyn, A. Z. Berna, E. A. Veraverbeke, C. Di Natale, and B. M. Nicolai, Postharvest Biol. Technol., 31(1), 9-19 (2004). https://doi.org/10.1016/S0925-5214(03)00129-7
  19. J. A. Abbott, R. A. Saftner, K. C. Gross, B. T. Vinyard, and J. Janick, Postharvest Biol. Technol., 33(2), 127- 140 (2004). https://doi.org/10.1016/j.postharvbio.2003.12.008
  20. E. Aprea, M. L. Corollaro, E. Betta, I. Endrizzi, M. L. Dematte, F. Biasioli, and F. Gasperi, Food Res. Int., 49(2), 677-686 (2012). https://doi.org/10.1016/j.foodres.2012.09.023
  21. J. Guo, T. Yue, and Y. Yuan, J. Food Sci., 77(10), 1090- 1096 (2012). https://doi.org/10.1111/j.1750-3841.2012.02914.x
  22. L. Ferreira, R. Perestrelo, M. Caldeira, and J. S. Camara, J. Sep. Sci., 32(11), 1875-1888 (2009). https://doi.org/10.1002/jssc.200900024
  23. H. H. Gan, C. Soukoulis, and I. Fisk, Food Chem., 146, 149-156 (2014). https://doi.org/10.1016/j.foodchem.2013.09.024
  24. A. Plotto, PhD thesis, Oregon State University, Corvallis, Oregon, USA, 193 (1998).
  25. A. A. Williams and M. Knee, Ann. Appl. Biol., 87(1), 127-131 (1977). https://doi.org/10.1111/j.1744-7348.1977.tb00670.x
  26. A. M. Karlsen, K. Aaby, H. Sivertsen, P. Baardseth, and M.R. Ellekjaer, Food Qual. Prefer., 10(4), 305-314 (1999). https://doi.org/10.1016/S0950-3293(99)00030-0
  27. E. M. Yahia, Hortic. Rev., 16(6), 197-234 (1994).

Acknowledgement

Supported by : Korea Research Institute, Ministry of Agriculture, Food, and Rural Affairs