DOI QR코드

DOI QR Code

Identification of triacylglycerols in coix seed extract by preparative thin layer chromatography and liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry

  • Sim, Hee-Jung ;
  • Lee, Seul gi ;
  • Park, Na-Hyun ;
  • Kim, Youna ;
  • Cho, Hyun-Woo ;
  • Hong, Jongki
  • Received : 2017.02.03
  • Accepted : 2017.02.12
  • Published : 2017.04.25

Abstract

Here we reported a methodology for identification of triacylglycerols (TAGs) and diacylglycerols (DAGs) in coix seed by preparative thin layer chromatography (prep-TLC) and non-aqueous reversed-phase liquid chromatography (NARP LC)-atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (MS/MS). Lipid components were extracted from coix seed by reflux extraction using n-hexane for 3 hr. TAGs and DAGs in coix seed extract were effectively purified and isolated from matrix interferences by prep-TLC and then analyzed by LC-APCI-MS and MS/MS for identification. TAGs were effectively identified taking into consideration of their LC retention behavior, APCI-MS spectra patterns, and MS/MS spectra of $[DAG]^+$ ions. In MS/MS spectra of TAGs, diacylglycerol-like fragment $[DAG]^+$ ions were useful to identify TAGs with isobaric fragment ions. Based on an established method, 27 TAGs and 8 DAGs were identified in coix seed extract. Among them, 15 TAGs and 8 DAGs were for the first time observed in coix seed. Interestingly, some of TAGs isolated by prep-TLC were partly converted into DAGs through probably photolysis process during storing in room temperature. Thus, degradation phenomenon of TAGs should be considered in the quality evaluation and nutritional property of coix seed. LC-APCI-MS/MS combined with prep-TLC will be practical method for precise TAG and DAG analysis of other herbal plants.

Keywords

triacylglycerol;diacylglycerol;coix seed;Prep-TLC;LC-APCI-MS/MS

References

  1. C. C. Kuo, , W. Chiang, G. P. Liu, Y. L. Chien, J. Y. Chang, C. K. Lee, J. M. Lo, S. L. Huang, M. C. Shih, and Y. H. Kuo, J. Agric. Food Chem., 50, 5850-5855 (2002). https://doi.org/10.1021/jf020391w
  2. D. W. Huang, Y. H. Kuo, F. Y. Lin, Y. L. Lin, and W. Chiang, J. Agric. Food Chem., 57, 2259-2266 (2009). https://doi.org/10.1021/jf803255p
  3. Tanimura, Chem. Pharm. Bull., 9, 47-53 (1961). https://doi.org/10.1248/cpb.9.47
  4. S. O. Kim, S. J. Yun, B. Jung, E. H. Lee, D. H. Hahm, I. Shim, and H. J. Lee, Life Sci., 75, 1391-1404 (2004). https://doi.org/10.1016/j.lfs.2004.03.006
  5. F. Yu, J. Gao, Y. Zeng, and C. X. Liu, J. Ethnopharmacol., 119, 252-258 (2008). https://doi.org/10.1016/j.jep.2008.07.015
  6. M. J. Jimenez, L. Esteban, A. Robles, E. Hita, P. A. Gonzalez, M. M. Munio, and E. Molina, Process Biochem., 45, 407-414 (2010). https://doi.org/10.1016/j.procbio.2009.10.018
  7. M. C. Michalski, C. Genot, C. Gayet, C. Lopez, F. Fine, F. Joffre, J. L. Vendeuvre, J. Bouvier, J. M. Chardigny, and K. Raynal-Ljutovac, Prog. Lipid Res., 52, 354-373 (2013). https://doi.org/10.1016/j.plipres.2013.04.004
  8. S. D. Stamatov and J. Stawinski, Org. Biomol. Chem., 5, 3387-3800 (2007). https://doi.org/10.1039/b715247g
  9. Z. M. Xiang, M. ZHU, B. L. Chen, and Y. Chen, Chin. J. Chinese materia medica, 30, 1436-1438 (2005).
  10. Fan Zhu, Trends Food Sci. Tech., 61, 160-175 (2017). https://doi.org/10.1016/j.tifs.2016.12.003
  11. M. H. Lee, H. K. Park, and I. W. Kim, Anal. Sci. Tech., 19, 189-193 (2006).
  12. M. Lisa, M. Holcapek, T. Rezanka, and N. Kabatova, J. Chromatogr. A., 1146, 67-77 (2007). https://doi.org/10.1016/j.chroma.2007.01.122
  13. C. Ruiz-Samblas, L. Cuadros-Rodriguez, A. Gonzalez- Casado, F. P. Rodriguez Garcia, D. L. Mata-Espinosa, P. and J. M. Bosque-Sendra, Anal. Bioanal. Chem., 399, 2093-2103 (2011). https://doi.org/10.1007/s00216-010-4423-z
  14. E. D. Dodds, M. R. McCoy, L. D. Rea, and J. M. Kennish, Lipids 40, 419-428 (2005). https://doi.org/10.1007/s11745-006-1399-8
  15. H. J. Sim, J. H. Kim, S. K. Lee, E. H. Kim, Y. H. Jin, E. K. Seo, and J. Hong, Bull. Korean Chem. Soc., 36, 1707-1709 (2015). https://doi.org/10.1002/bkcs.10296
  16. M. Fasciotto and A. D. Pereira Netto, Talanta, 81, 1116-1125 (2010). https://doi.org/10.1016/j.talanta.2010.02.006
  17. Q. Zhou, B. Gao, X. Zhang, Y. Xu, H. Shi, and L. Yu, Food Chem., 143, 199-204 (2014). https://doi.org/10.1016/j.foodchem.2013.07.114
  18. A. Jakab, K. Heberger, and E. Forgacs, J. Chromatogr. A, 976, 255-263 (2002). https://doi.org/10.1016/S0021-9673(02)01233-5
  19. A. Acheampong, N. Leveque, A. Tchapla, and S. Herson, J. Chromatogr. A, 1218, 5087-5100 (2011). https://doi.org/10.1016/j.chroma.2011.05.064
  20. M. Lisa and M. Holcapek, Anal. Chem., 85, 1852-1859 (2013). https://doi.org/10.1021/ac303237a
  21. T. Rezanka, L. Nedbalova, and K. Sigler, J. Chromatogr. A, 1467, 261-269 (2016). https://doi.org/10.1016/j.chroma.2016.07.006
  22. H. C. Lu, P. L. Jiang, Light R. C. Hsu, C. L. Chyan, and Jason T. C. Tzen, Biosci. Biotechnol. Biochem., 74, 1841- 1847 (2010). https://doi.org/10.1271/bbb.100247

Acknowledgement

Supported by : National Research Foundation of Korea