Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid

Corosolic acid에 의한 Staphylococcus aureus의 생장 및 생물막 형성 저해

  • Yum, Su-Jin (Department of Food Science and Technology, Chungnam National University) ;
  • Kim, Seung Min (Department of Human Ecology, Korea National Open University) ;
  • Yu, Yeon-Cheol (Department of Food Science and Technology, Chungnam National University) ;
  • Jeong, Hee Gon (Department of Food Science and Technology, Chungnam National University)
  • 염수진 (충남대학교 식품공학과) ;
  • 김승민 (한국방송통신대학교 생활과학과) ;
  • 유연철 (충남대학교 식품공학과) ;
  • 정희곤 (충남대학교 식품공학과)
  • Received : 2016.11.21
  • Accepted : 2017.01.13
  • Published : 2017.04.30


Staphylococcus aureus is a pathogenic bacterium that causes food poisoning, exhibits a strong capacity to form biofilm, and is highly resistant to antimicrobial agents. The purpose of this study was to investigate the antimicrobial characteristics of corosolic acid against S. aureus. S. aureus showed high susceptibility to corosolic acid in a concentration-dependent manner. The minimum inhibitory concentration and colony-forming ability determined by the broth microdilution method showed that corosolic acid had strong antimicrobial activity against the bacteria. The diameters of the inhibition zone and numbers of colony forming units at each concentration of corosolic acid were also measured. In addition, corosolic acid displayed potent biofilm inhibition activity against S. aureus at concentrations below its minimum inhibitory concentration. These results suggest that corosolic acid can be used to effectively prevent biofilm formation by S. aureus, thereby making S. aureus more susceptible to the action of antimicrobials.


antimicrobial agent;corosolic acid;Staphylococcus aureus;biofilm;food-borne pathogen


Supported by : 충남대학교


  1. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, Van der Giessen J, Kruse H. Food-borne diseases?the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: S3-S15 (2010)
  2. Shin HS, Lee SH, Kim JS, Kim JS, Han KH. Socioeconomic costs of food-borne disease using the cost-of-illness model: Applying the QALA method. J. Prev. Med. Public Health 43: 352-361 (2010)
  3. Brown MH. Meat microbiology. Applied Science Publishers, London, England. pp. 269-486 (1982)
  4. Atanassova V, Meindl A, Ring C. Prevalence of Staphylococcus aureus and staphylococcal enterotoxins in raw pork and uncooked smoked ham-A comparison of classical culturing detection and RFLP-PCR. Int. J. Food Microbiol. 68: 105-113 (2001)
  5. Lee SHI, Mangolin BLC, Goncalves JL, Neeff DV, Silva MP, Cruz AG, Oliveira CAF. Biofilm-producing ability of Staphylococcus aureus isolates from Brazilian dairy farms. J. Dairy Sci. 97: 1812-1816 (2014)
  6. Thomas JG, Litton I, Rinde H. Economic impact of biofilms on treatment costs. Taylor & Francis Group, LLC, CRC Press, Boca Raton, FL, USA. pp. 21-37 (2006)
  7. Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 46: 412-429 (2014)
  8. Miura T, Takagi S, Ishida T. Management of diabetes and its complications with banaba (Lagerstroemia speciosa L.) and corosolic acid. Evid-Based Compl. Alt. 2012: 871495 (2012)
  9. Jang DS, Lee GY, Kim JH, Lee YM, Kim JM, Kim YS, Kim JS. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch. Pharm. Res. 31: 666-670 (2008)
  10. Amico V, Barresi V, Condorelli D, Spatafora C, Tringali C. Antiproliferative terpenoids from almond hulls (Prunus dulcis): Identification and structure-activity relationships. J. Agr. Food Chem. 54: 810-814 (2006)
  11. Stohs SJ, Miller H, Kaats GR. A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytotherapy Res. 26: 317-324 (2012)
  12. Nho KJ, Chun JM, Kim HK. Corosolic acid induces apoptotic cell death in human lung adenocarcinoma A549 cells in vitro. Food Chem. Toxicol. 56: 8-17 (2013)
  13. Liu H, Zhao Y, Zhao D, Gong T, Wu Y, Han H, Xu T, Peschel A, Han S, Qu D. Antibacterial and anti-biofilm activities of thiazolidione derivatives against clinical Staphylococcus strains. Emerg. Microb. Infect. 4: e1 (2015)
  14. Meng Y, Hou X, Lei J, Chen M, Cong S, Zhang Y, Ding W, Li G, Li X. Multi-functional liposomes enhancing target and antibacterial immunity for antimicrobial and anti-biofilm against methicillin- resistant Staphylococcus aureus. Pharm. Res. 33: 763-775 (2016)
  15. Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YMA, Passwater R. Antidiabetic activity of a standardized extract ($Glucosol^{TM}$) from Lagerstroemia speciosa leaves in type II diabetics: A dose-dependence study. J. Ethnopharmacol. 87: 115-117 (2003)
  16. Quisumbing E. Medicinal Plants of the Phillippines. Katha Publishing, Quezon city, Philippines. pp. 640-642 (1978)
  17. Murakami C, Myoga K, Kasai R, Ohtani K, Kurokawa T, Ishibashi S, Dayrit F, Padolina WG, Yamasaki K. Screening of plant constituents for effect on glucose transport activity in Ehrlich ascites tumour cells. Chem. Pharm. Bull. 41: 2129-2131 (1993)
  18. Matsuyama F. Composition for inhibiting increase of blood sugar level or lowering blood sugar level. U.S. Patent 0006941 (2000)
  19. Yang J, Leng J, Li JJ, Tang JF, Li Y, Liu BL, Wen XD. Corosolic acid inhibits adipose tissue inflammation and ameliorates insulin resistance via AMPK activation in high-fat fed mice. Phytomedicine 23: 181-190 (2016)
  20. Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Compl. Altern. Med. 11: 29-34 (2011)
  21. Paulo L, Ferreira S, Gallardo E, Queiroz JA, Domingues F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 26: 1533-1538 (2010)
  22. Gutierrez-Larrainzar M, Rua J, Caro I, De Castro C, De Arriaga D, Garcia-Armesto MR, Del Valle P. Evaluation of antimicrobial and antioxidant activities of natural phenolic compounds against foodborne pathogens and spoilage bacteria. Food Control. 26: 555-563 (2012)
  23. Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kim YC, Lee DS, Shin DW, Kweon KT, Kwon DY. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 20: 714-718 (2013)
  24. Desbois AP, Lawlor KC. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar. drugs 11: 4544-4557 (2013)
  25. Periasamy S, Joo HS, Duong AC, Bach THL, Tan VY, Chatterjee SS, Cheung GY, Otto M. How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl. Acad. Sci. 109: 1281-1286 (2012)
  26. Aarnisalo K, Lunden J, Korkeala H, Wirtanen G. Susceptibility of Listeria monocytogenes strains to disinfectants and chlorinated alkaline cleaners at cold temperatures. LWT-Food Sci. Technol. 40: 1041-1048 (2007)
  27. Oh TY, Baek SY, Choi JH, Jeong MC, Koo OK, Kim SM, Kim HJ. Analysis of foodborne pathogens in Brassica campestris var. narinosa microgreen from harvesting and processing steps. J. Appl. Biol. Chem. 59: 63-68 (2016)
  28. Srey S, Jahid IK, Ha SD. Biofilm formation in food industries: a food safety concern. Food Control. 31: 572-585 (2013)
  29. Exner M, Tuschewitzki GJ, Scharnagel J. Influence of biofilms by chemical disinfectants and mechanical cleaning. Zentralbl Bakteriol Mikrobiol. Hyg. B 183: 549-563 (1987)
  30. Cho KH, Park SG. Antibacterial effects on Bacillus stearothermophilus by adding natural grapefruit seed extracts in soymilk. J. Kor. Ind. Eng. Chem. 16: 139-143 (2005)