DOI QR코드

DOI QR Code

Effects of Polygonatum sibiricum rhizome extract on lipid and energy metabolism in high-fat diet-induced obese mice

고지방 식이 유도 비만 마우스 모델에서 황정 추출물의 지방질 및 에너지 대사 관련 유전자에 대한 효능 연구

  • Received : 2016.09.13
  • Accepted : 2016.12.21
  • Published : 2017.04.30

Abstract

In this study, factors involved in lipid and energy metabolism following treatment with ethanolic extract of the Polygonatum sibiricum rhizome (ID1216) were evaluated in high-fat diet-induced obese mice. ID1216-treated mice showed a significant reduction in weight gain compared to non-treated mice. ID1216 treatment increased the protein levels of AMP-dependent protein kinase, sirtuin1, peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1-${\alpha}$ ($PGC1{\alpha}$), peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and uncoupling proteins in the adipose tissue, liver and muscle compared to vehicle treatment. Analysis of downstream signals of the sirtuin1 $PGC1{\alpha}$-$PPAR{\alpha}$ pathway showed that ID1216 regulates the expression of ${\beta}$-oxidation related genes such as acyl-CoA oxidase, carnitine palmitoyltransferase1, acyl-CoA dehydrogenase and adipocyte protein 2. In addition, ID1216 increased the expression of adipose triglyceride lipase. These results suggest that ID1216 has anti-obesity effects by regulating the genes involved thermogenesis, ${\beta}$-oxidation and lipolysis in a diet-induced obesity model.

Keywords

Polygonatum sibiricum;obesity;energy metabolism;lipid metabolism;lipolysis

References

  1. Wujisguleng W, Liu Y, Long CH. Ethnobotanical review of food uses of Polygonatum (Convallariaceae) in China. Acta Soc. Bot. Pol. 81: 239-244 (2012) https://doi.org/10.5586/asbp.2012.045
  2. Chen K, Li C. Recent advances in studies on traditional Chinese anti-aging material medica. J. Tradit. Chin. Med. 14: 128-131 (1994)
  3. Choi SB, Park SM. A steroidal glycoside from Polygonatum odoratum (Mill) Druces. improves insulin resistance but does not alter insulin secretion in 90% pancreatectomized rats. Biosci. Biotech. Bioch. 66: 2036-2043 (2002) https://doi.org/10.1271/bbb.66.2036
  4. Miura T, Kato A. The difference in hypoglycemic action between Polygonati rhizoma and Polygonati officinalis rhizoma. Biol. Pharm. Bull. 18: 1605-1606 (1995) https://doi.org/10.1248/bpb.18.1605
  5. Gu M, Zhang Y, Fan S, Ding X, Ji G, Huang C. Extracts of rhizoma polygonati odorati prevent high-fat diet-induced metabolic disorders in C57BL/6 Mice. PLoS One. 8: e81724 (2013) https://doi.org/10.1371/journal.pone.0081724
  6. Debnath T, Park SR, Kim DH, Jo JE, Lim, BO. Antioxidant and anti-inflammatory activity of Polygonatum sibiricum rhizome extracts. Asian Pac. J. Trop Dis. 3: 308-313 (2013) https://doi.org/10.1016/S2222-1808(13)60074-2
  7. Shu X, Lv J, Chen D, Chen Y. Anti-diabetic effects of total flavonoids from Polygonatum sibiricum red in induced diabetic mice and induced diabetic rats. Herald J. Biochem. Bioinform. 1: 14-19 (2012)
  8. Lee SJ. The analysis of relationship between lifestyle factors metabolic syndrome in male adult. PhD thesis, Sung-shin Women's University, Seoul, Korea (2010)
  9. Cheung BM, Cheung TT, Samaranayake NR. Safe of antiobesity drugs. Ther. Adv. Drug Saf. 4: 171-181 (2013) https://doi.org/10.1177/2042098613489721
  10. Kim JB. Dynamic cross talk between metabolic organs in obesity and metabolic disease. Exp. Mol. Med. 48: e214 (2016) https://doi.org/10.1038/emm.2015.119
  11. Mahadik Sr, Lele RD, Saranath D, Seth A, Parikh V. Uncoupling protein-2 (UCP2) gene expression in subcutaneous and omental adipose tissue of Asian Indians: Relationship to adiponectin and parameters of metabolic syndrome. Adipocyte 1: 101-107 (2012) https://doi.org/10.4161/adip.19671
  12. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH. Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15: 269-272 (1997) https://doi.org/10.1038/ng0397-269
  13. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP. Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408: 39-42 (1997) https://doi.org/10.1016/S0014-5793(97)00384-0
  14. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB. UCP3: An uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophs. Res. Co. 235: 79-82 (1997) https://doi.org/10.1006/bbrc.1997.6740
  15. Ko JH, Kwon HS, Yoon JM, Yoo JS, Jang HS, Kim JY, Yeon SW, Kang JH. Effects of Polygonatum sibiricum rhizome ethanol extract in high-fat diet-fed mice. Pharm. Biol. 53: 563-570 (2015) https://doi.org/10.3109/13880209.2014.932393
  16. Ko JH, Jeon WJ, Kwon HS, Yeon SW, Kang JH. Anti-obesity effects of ethanolic extract of Polygonatum sibiricum rhizome in high-fat diet-fed mice. Korean J. Food Sci. Technol. 47: 499-503 (2015) https://doi.org/10.9721/KJFST.2015.47.4.499
  17. Jeon WJ, Lee DS, Shon SY, Seo YJ, Yeon SW, Knag JH. Effects of ethanol extract of Polygonatum sibiricum rhizome on obesityrelated genes. Korean J. Food Sci. Technol. 48: 384-391 (2016) https://doi.org/10.9721/KJFST.2016.48.4.384
  18. Lee DH, Goldberg AL. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J. Biol. Chem. 288: 30515-30526 (2013) https://doi.org/10.1074/jbc.M113.489716
  19. Sandri MJ. Lin C. Handschin W. Yang ZP. Arany SH. Lecker AL. Goldberg and B. M. Spiegelman PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. P. Natl. Acad. Sci. USA 103: 16260-16265 (2006) https://doi.org/10.1073/pnas.0607795103
  20. Choi MS, Kim JI, Jeong JB, Lee SB, Jeong JN, Jeong, HJ, Seo EW, Kim TY, Kwon OJ, Lim JH. Suppressive Effects of By-Product Extracts from Soybean on Adipocyte Differentiation and Expression of Obesity-Related Genes in 3T3-L1 Adipocyte. J. Life Sci. 21: 358-367 (2011) https://doi.org/10.5352/JLS.2011.21.3.358
  21. Feldmann, HMV, Golozoubova V. Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 9: 203-209 (2009) https://doi.org/10.1016/j.cmet.2008.12.014
  22. Fromme T, Klingenspor M. Uncoupling protein 1 expression and high-fat diets. Am. J. Physiol.-Reg. I. 300: R1-8 (2011) https://doi.org/10.1152/ajpcell.00448.2010
  23. Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrin. Met. 23: 459-466 (2012) https://doi.org/10.1016/j.tem.2012.06.006
  24. Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J. Biol. Chem. 276: 1486-1493 (2001) https://doi.org/10.1074/jbc.M006246200
  25. Minnich A, Tian N, Byan L, Bilder G. A potent PPARalpha agonist stimulates mitochondrial fatty acid beta-oxidation in liver and skeletal muscle. Am J. Physiol.-Endo. M. 280: E270-279 (2001)
  26. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9: 327-338 (2009) https://doi.org/10.1016/j.cmet.2009.02.006
  27. Goto T, Lee JY, Teraminami A, Kim YI, Hirai S, Uemura T, Inoue H, Takahashi N, Kawada T. Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J. Lipid Res. 52: 873-884 (2011) https://doi.org/10.1194/jlr.M011320
  28. Sato A, Kawano H, Notsu T, Ohta M, Nakakuki M, Mizuguchi K , Itoh M, Suganami T, Ogawa Y. Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: Importance of hepatic lipogenesis. Diabetes 59: 2495-250 (2010) https://doi.org/10.2337/db09-1554
  29. Huang, ZH, Reardon CA, Mazzone T. Endogenous ApoE expression modulates adipocyte triglyceride content and turnover. Diabetes 55: 3394-3402 (2006) https://doi.org/10.2337/db06-0354
  30. Jambor de Sousa, UL, Koss MD, M. Fillies, Gahl A, Scheeder MR, Cardoso MC, Leonhardt H, Geary N, Langhans W, Leonhardt M. CPT1alpha over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells. Biochem. Bioph. Res. Co. 338: 757-761 (2005) https://doi.org/10.1016/j.bbrc.2005.10.016
  31. Bruce, C. R., A. J. Hoy, N. Turner, M. J. Watt, T. L. Allen, K. Carpenter, G. J. Cooney, M. A. Febbraio and E. W. Kraegen. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58: 550-558 (2009) https://doi.org/10.2337/db08-1078
  32. van der Leij FR, Bloks VW, Grefhorst A, Hoekstra J, Gerding A, Kooi K, Gerbens F, Meerman G, Kuipers F. Gene expression profiling in livers of mice after acute inhibition of beta-oxidation. Genomics 90: 680-689 (2007) https://doi.org/10.1016/j.ygeno.2007.08.004
  33. Xu, J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK,Veniant MM. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58: 250-259 (2009) https://doi.org/10.2337/db08-0392
  34. Nelson, DL, Cox M. Lehninger principles of biochemistry. 4th ed. W. H. Freeman and Company, New York, USA. pp. 648-649 (2005)
  35. Karlic H, Lohninger S, Koeck T, Lohninger A. Dietary L-carnitine stimulates carnitine acyltransferases in the liver of aged rats. J. Histochem. Cytochem. 50: 205-212 (2002) https://doi.org/10.1177/002215540205000208
  36. Singh I. Biochemistry of peroxisomes in health and disease. Mol. Cell. Biochem. 167: 1-29 (1997)
  37. Park S, Shin S, Lim Y, Shin JH, Seong JK, Han SN. Korean pine nut oil attenuated hepatic triacylglycerol accumulation in high-fat diet-induced obese mice. Nutrients 21: E59 (2016)
  38. Ruderman N, Prentki M. AMP kinase and malonyl-CoA: Targets for therapy of the metabolic syndrome. Nat. Rev. Drug Discov. 3: 340-351 (2004) https://doi.org/10.1038/nrd1344
  39. Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, Bruss M, Hellerstein MK, Lee HY, Samuel VT, Shulman GI, Wang Y, Duncan RE, Kang C, Sul HS. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13: 739-748 (2011) https://doi.org/10.1016/j.cmet.2011.05.002
  40. Pardo R, Enguix N, Lasheras J, Feliu JE, Kralli A, Villena JA. Rosiglitazone-induced mitochondrial biogenesis in white adipose tissue is independent of peroxisome proliferator-activated receptor ${\gamma}$ coactivator-1${\alpha}$. PLoS One 6: e26989 (2011) https://doi.org/10.1371/journal.pone.0026989
  41. Villarroya F, Iglesias R, Giralt M. PPARs in the control of uncoupling proteins gene expression. PPAR Res. 2007: 74364 (2007)
  42. Sujata R. Mahadik, Ramchandra D. Lele, Dhananjaya Saranath, Anika Seth, Vikram Parikh. Uncoupling protein-2 (UCP2) gene expression in subcutaneous and omental adipose tissue of Asian Indians. Adipocyte 1: 101-107 (2012) https://doi.org/10.4161/adip.19671
  43. Lass A, Zimmermann R, Oberer M, Zechner R. Lipolysis-A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50: 14-27 (2011) https://doi.org/10.1016/j.plipres.2010.10.004
  44. Chakrabarti P, English T, Karki S, Qiang L, Tao R, Kim J, Luo Z, Farmer SR, Kandror KV. SIRT1 controls lipolysis in adipocytes via FoxO1-mediated expression of ATGL. J. Lipid Res. 52: 1693-1701 (2011) https://doi.org/10.1194/jlr.M014647