DOI QR코드

DOI QR Code

COMMUTATORS OF SINGULAR INTEGRAL OPERATOR ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

  • Wang, Hongbin
  • Received : 2015.12.26
  • Published : 2017.05.01

Abstract

Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type Hardy spaces with variable exponent.

Keywords

Herz-type Hardy space;variable exponent;$Calder{\acute{o}}n$-Zygmund singular integral;commutator

References

  1. C. Capone, D. Cruz-Uribe, SFO and A. Fiorenza, The fractional maximal operator and fractional integrals on variable $L^p$ spaces, Rev. Mat. Iberoamericana 23 (2007), no. 3, 743-770.
  2. D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces: Foundations and Harmonic Analysis (Applied and Numerical Harmonic Analysis), Springer, Heidelberg, 2013.
  3. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Perez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239-264.
  4. L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., vol. 2017, Springer, Heidelberg, 2011.
  5. M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math. 36 (2010), no. 1, 33-50. https://doi.org/10.1007/s10476-010-0102-8
  6. M. Izuki, Boundedness of commutators on Herz spaces with variable exponent, Rend. Circ. Mat. Palermo (2) 59 (2010), no. 2, 199-213. https://doi.org/10.1007/s12215-010-0015-1
  7. O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}\;and\;W^{k,p(x)}$, Czechoslovak Math. J. 41 (1991), no. 4, 592-618.
  8. S. Lu, Y. Ding, and D. Yan, Singular Integrals and Related Topics, World Scientific Press, Beijing, 2011.
  9. S. Lu, Q. Wu, and D. Yang, Boundedness of commutators on Hardy type spaces, Sci. China Ser. A 45 (2002), no. 8, 984-997. https://doi.org/10.1007/BF02879981
  10. E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), no. 9, 3665-3748. https://doi.org/10.1016/j.jfa.2012.01.004
  11. J. Tan and Z. Liu, Some boundedness of homogeneous fractional integrals on variable exponent function spaces, Acta Math. Sinica (Chin. Ser.) 58 (2015), no. 2, 309-320.
  12. H. Wang, The continuity of commutators on Herz-type Hardy spaces with variable exponent, Kyoto J. Math. 56 (2016), no. 3, 559-573. https://doi.org/10.1215/21562261-3600175
  13. H. Wang, Boundedness of commutators on Herz-type Hardy spaces with variable exponent, Jordan J. Math. Stat. 9 (2016), no. 1, 17-30.
  14. H. Wang and Z. Liu, The Herz-type Hardy spaces with variable exponent and their applications, Taiwanese J. Math. 16 (2012), no. 4, 1363-1389. https://doi.org/10.11650/twjm/1500406739
  15. H. Wang and Z. Liu, Some characterizations of Herz-type Hardy spaces with variable exponent, Ann. Funct. Anal. 6 (2015), no. 2, 224-243. https://doi.org/10.15352/afa/06-2-19