DOI QR코드

DOI QR Code

Analysis of Voltage Generating Characteristics of Composite Rail Pad Composed of Piezoelectric PVDF Film and Polyurethane Bonding Materials

철도레일 복합 압전패드의 구성 차이에 따른 전압 발생 특성 분석

  • Cho, Hojin (Department of Civil, Environmental and Railroad Engineering, Paichai University) ;
  • Lim, Yujin (Department of Civil, Environmental and Railroad Engineering, Paichai University) ;
  • Kim, Sung Su (Department of Nano/Polymer Materials Engineering, Paichai University) ;
  • Lee, Jong Kwan (Korea Polytech Co., Ltd.)
  • 조호진 (배재대학교 건설환경철도공학과) ;
  • 임유진 (배재대학교 건설환경철도공학과) ;
  • 김성수 (배재대학교 나노고분자재료공학과) ;
  • 이종관 ((주)대한폴리텍)
  • Received : 2016.06.08
  • Accepted : 2017.03.20
  • Published : 2017.06.01

Abstract

A railway track generates severe levels of vibrations. In order to reduce these vibrations and to provide structural stability, various rail pads, mats, etc., are used for vibration protection. In this study, a specially designed rail pad was developed to reduce vibration and to generate electric power simultaneously, that is, by using the vibrations generated by railway cars on the track. The newly developed rail pads were tested to evaluate the characteristics of electric power by investigating the generated voltage and the current levels and patterns. In addition, we proposed an optimal laminated structure and adhesive by comparing the voltage generated by each type of adhesive required for optimal adhesion of the rail pad and the piezoelectric device.

Acknowledgement

Supported by : 국토교통부

References

  1. J. Lee, J. Korean Soc. of Ro. Eng., 13, 159 (2011).
  2. A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, United Kingdom, 2011).
  3. X. Gao, W. H. Shih, and W. Y. Shih, Appl. Phys. Lett., 97, 233503 (2010). [DOI: http://dx.doi.org/10.1063/1.3521389] https://doi.org/10.1063/1.3521389
  4. H. Shen, J. Qiu, and M. Balsi, Sens. Actuators A, 169, 178 (2011). [DOI: http://dx.doi.org/10.1016/j.sna.2011.04.043] https://doi.org/10.1016/j.sna.2011.04.043
  5. W. G. Li, S. He, and S. Yu, IEEE Trans. Ind. Electron., 57, 868 (2010). [DOI: http://dx.doi.org/10.1109/TIE.2009.2030761] https://doi.org/10.1109/TIE.2009.2030761
  6. H. C. Song, C. Y. Gang, and S. J. Yoon, Bulletin of KIEEME, 23, 28 (2010).
  7. S. Priya, IEEE Trans. Ultrason., Ferroelect., Freq. Con., 57, 12 (2010). [DOI: http://dx.doi.org/10.1109/TUFFC.2010. 1734]
  8. R. A. Islam and S. Priya, J. Am. Ceram. Soc., 89, 3147 (2006). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2006.01205.x] https://doi.org/10.1111/j.1551-2916.2006.01205.x
  9. I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Am. Ceram. Soc., 94, 1 (2011). [DOI: http://dx.doi.org/10.1111/j.1551-2916.2010.04210.x] https://doi.org/10.1111/j.1551-2916.2010.04210.x
  10. C. I. Kim, Y. H. Jang, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, and S. Nahm, Appl. Phys. Express, 5, 037101 (2012). [DOI: http://dx.doi.org/10.1143/APEX.5.037101] https://doi.org/10.1143/APEX.5.037101
  11. I. H. Kim, H. J. Jung, B. M. Lee, and S. J. Jang, Appl. Phys. Letters., 98, 214102 (2011). [DOI: http://dx.doi.org/10.1063/1.3595278] https://doi.org/10.1063/1.3595278
  12. X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett., 10, 2133 (2010). [DOI: http://dx.doi.org/10.1021/nl100812k] https://doi.org/10.1021/nl100812k
  13. J. Lee, H. Moon, S. Kwon, and S. Ryu, J. Korea Soc. Civ. Eng., 31, 689 (2011).
  14. Y. Zhang and X. Zhang, Piezoelectricity Acoustic Waves Device Applications Symposium (2010).
  15. C. I. Kim, J. H. Lee, K. B. Kim, Y. H. Jeong, J. H. Cho, J. H. Paik, Y. J. Lee, and S. Nahm, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 554 (2011). [DOI: http://dx.doi.org/10.4313/JKEM.2011.24.7.554]