DOI QR코드

DOI QR Code

Investigation of Low-Frequency Characteristics of Four-Switch Three-Phase Inverter

  • Yuan, Qingwei (College of Electrical Engineering, Zhejiang University) ;
  • Cheng, Chong (College of Electrical Engineering, Zhejiang University) ;
  • Zhao, Rongxiang (College of Electrical Engineering, Zhejiang University)
  • Received : 2016.09.13
  • Accepted : 2017.03.22
  • Published : 2017.07.01

Abstract

The low-frequency characteristics of four-switch three-phase (FSTP) inverter are investigated in this paper. Firstly, a general space vector pulse width modulation (SVPWM) directly involved the neutral point voltage of DC-link is proposed, where no sector identifications and trigonometric function calculations are needed. Subsequently, to suppress the DC offset in the neutral point voltage, the relationship between the neutral point voltage and the ${\beta}-axis$ component of the load current is derived, and then a new neutral point voltage control scheme is proposed where no low pass filter is adopted. Finally, the relationship between the load power factor and the maximum linear modulation index of the FSTP inverter is revealed. Since the operational region for the FSTP inverter in low frequency is reduced by the enlarged amplitude of the neutral point voltage, a linear modulation range enlargement scheme is proposed. A permanent magnet synchronous motor with preset rotary speed serves as the low-frequency load of the FSTP inverter. Experimental results verify that the new neutral point voltage control scheme is effective in the deviation suppression of the neutral point voltage, and the proposed scheme is able to provide a larger linear operational region in low frequency.

References

  1. H. W. Van Der Broeck and J. D. Van Wyk, "A Comparative Investigation of a Three-Phase Induction Machine Drive with a Component Minimized Voltage-Fed Inverter under Different Control Options," IEEE Trans. Ind. Appl., vol. IA-20, no. 2, pp. 309-320, Mar. 1984. https://doi.org/10.1109/TIA.1984.4504413
  2. M. Azab and A. L. Orille, "Novel flux and torque control of induction motor drive using four switch three phase inverter," in The 27th Annu. Conf. IEEE Ind. Electron. Society, 2001. IECON '01. Denver, CO, 2001, pp. 1268-1273 vol.2.
  3. S. Kazemlou and M. R. Zolghadri, "Direct torque control of four-switch three phase inverter fed induction motor using a modified SVM to com-pensate dclink voltage imbalance," in Int. Conf. Electric Power and Energy Convers. Syst., 2009. EPECS '09. Sharjah, 2009, pp. 1-6.
  4. B. El Badsi, B. Bouzidi and A. Masmoudi, "DTC Scheme for a Four-Switch Inverter-Fed Induction Motor Emulating the Six-Switch Inverter Operation," IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3528-3538, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2225449
  5. D. Sun, Z. He, Y. He and Y. Guan, "Four-Switch Inverter Fed PMSM DTC with SVM approach for Fault Tolerant operation," in 2007 IEEE Int. Electric Machines & Drives Conf., Antalya, 2007, pp. 295-299.
  6. M. Masmoudi, B. E. Badsi and A. Masmoudi, "DTC of B4-Inverter-Fed BLDC Motor Drives With Reduced Torque Ripple During Sector-to-Sector Commutations," IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4855-4865, Sep. 2014. https://doi.org/10.1109/TPEL.2013.2284111
  7. K. D. Hoang, Z. Q. Zhu and M. P. Foster, "Influence and Compensation of Inverter Voltage Drop in Direct Torque-Controlled Four-Switch Three-Phase PM Brushless AC Drives," IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2343-2357, Aug. 2011. https://doi.org/10.1109/TPEL.2010.2096561
  8. D. Zhou, J. Zhao and Y. Liu, "Predictive Torque Control Scheme for Three-Phase Four-Switch Inverter-Fed Induction Motor Drives With DC-Link Voltages Offset Suppression," IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3309-3318, Jun. 2015. https://doi.org/10.1109/TPEL.2014.2338395
  9. C. Xia, Z. Wang, T. Shi and Z. Song, "A Novel Cascaded Boost Chopper for the Wind Energy Conversion System Based on the Permanent Magnet Synchronous Generator," IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 512-522, Sep. 2013. https://doi.org/10.1109/TEC.2013.2265236
  10. Y. Zhang, J. Zhu, W. Xu and Y. Guo, "A Simple Method to Reduce Torque Ripple in Direct Torque-Controlled Permanent-Magnet Synchronous Motor by Using Vectors With Variable Amplitude and Angle," IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2848-2859, Jul. 2011. https://doi.org/10.1109/TIE.2010.2076413
  11. W. Longhui, Z. Fang, Z. Pengbo, L. Hongyu and W. Zhaoan, "Study on the Influence of Supply-Voltage Fluctuation on Shunt Active Power Filter," IEEE Trans. Power Del., vol. 22, no. 3, pp. 1743-1749, Jul. 2007. https://doi.org/10.1109/TPWRD.2007.899786
  12. M. C. Cavalcanti, K. C. de Oliveira, A. M. de Farias, F. A. S. Neves, G. M. S. Azevedo and F. C. Camboim, "Modulation Techniques to Eliminate Leakage Currents in Transformerless Three-Phase Photovoltaic Systems," IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1360-1368, Apr. 2010. https://doi.org/10.1109/TIE.2009.2029511
  13. R. Wang, J. Zhao and Y. Liu, "A Comprehensive Investigation of Four-Switch Three-Phase Voltage Source Inverter Based on Double Fourier Integral Analysis," IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2774-2787, Oct. 2011. https://doi.org/10.1109/TPEL.2011.2119381
  14. F. Blaabjerg, D. O. Neacsu and J. K. Pedersen, "Adaptive SVM to compensate DC-link voltage ripple for four-switch three-phase voltage-source inverters," IEEE Trans. Power Electron., vol. 14, no. 4, pp. 743-752, Jul. 1999.
  15. C. B. Jacobina, E. R. C. da Silva, A. M. N. Lima and R. L. A. Ribeiro, "Vector and scalar control of a four switch three phase inverter," in Ind. Appl. Conf., 1995. Thirtieth IAS Annu. Meeting, IAS '95., Conf. Record of the 1995 IEEE, Orlando, FL, 1995, pp. 2422-2429 vol. 3.
  16. F. Blaabjerg, S. Freysson, H. H. Hansen and S. Hansen, "A new optimized space-vector modulation strategy for a component-minimized voltage source inverter," IEEE Trans. Power Electron., vol. 12, no. 4, pp. 704-714, Jul. 1997. https://doi.org/10.1109/63.602566
  17. M. B. de Rossiter Correa, C. B. Jacobina, E. R. C. da Silva and A. M. N. Lima, "A General PWM Strategy for Four-Switch Three-Phase Inverters," IEEE Trans. Power Electron., vol. 21, no. 6, pp. 1618-1627, Nov. 2006. https://doi.org/10.1109/TPEL.2006.882964
  18. G. A. Covic and G. L. Peters, "DC link imbalance compensation in four-switch inverter AC motor drives," Electron. Lett., vol. 33, no. 13, pp. 1101-1102, 19 Jun. 1997. https://doi.org/10.1049/el:19970797
  19. G. L. Peters, G. A. Covic and J. T. Boys, "Eliminating output distortion in four-switch inverters with threephase loads," IEE Proc. - Electric Power Appl., vol. 145, no. 4, pp. 326-332, Jul. 1998. https://doi.org/10.1049/ip-epa:19982022
  20. Z. Zeng, W. Zheng, R. Zhao, C. Zhu and Q. Yuan, "Modeling, Modulation, and Control of the Three-Phase Four-Switch PWM Rectifier Under Balanced Voltage," IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4892-4905, Jul. 2016. https://doi.org/10.1109/TPEL.2015.2480539
  21. Z. Zeng; W. Zheng; R. Zhao, "Space-Vector-Based Hybrid PWM Strategy for Reduced DC-Link Capacitor Current Stress in the Post-Fault Grid-Connected Three-Phase Rectifier," IEEE Trans. Ind. Electron., vol. PP, no. 99, pp. 1-1. doi: 10.1109/TIE.2016.2547367.
  22. N. M. A. Freire and A. J. M. Cardoso, "A Fault-Tolerant Direct Controlled PMSG Drive for Wind Energy Conversion Systems," IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 821-834, Feb. 2014. https://doi.org/10.1109/TIE.2013.2251734
  23. Y. Hu, L. Zhang, W. Huang and F. Bu, "A Fault-Tolerant Induction Generator System Based on Instantaneous Torque Control (ITC)," IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 412-421, Jun. 2010. https://doi.org/10.1109/TEC.2009.2038898
  24. W. Wang, A. Luo, X. Xu, L. Fang, T. M. Chau and Z. Li, "Space vector pulse-width modulation algorithm and DC-side voltage control strategy of three-phase four-switch active power filters," IET Power Electron., vol. 6, no. 1, pp. 125-135, Jan. 2013. https://doi.org/10.1049/iet-pel.2012.0391
  25. N. M. A. Freire and A. J. M. Cardoso, "A Fault- Tolerant PMSG Drive for Wind Turbine Applications With Minimal Increase of the Hardware Requirements," IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 2039-2049, May/Jun. 2014. https://doi.org/10.1109/TIA.2013.2282935