DOI QR코드

DOI QR Code

실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability

  • 홍효성 (충남대학교 메카트로닉스공학과) ;
  • 한종부 (충남대학교 메카트로닉스공학과) ;
  • 송하준 (충남대학교 메카트로닉스공학과) ;
  • 정사무엘 (부산대학교 기계공학부) ;
  • 김성수 (충남대학교 메카트로닉스공학과) ;
  • 유완석 (부산대학교 기계공학부) ;
  • 원문철 (충남대학교 메카트로닉스공학과) ;
  • 주상현 (국방과학연구소 제5기술연구본부)
  • Hong, Hyosung (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Han, Jong-Boo (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Song, Hajun (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Jung, Samuel (Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kim, Sung-Soo (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Yoo, Wan Suk (Dept. of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Won, Mooncheol (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Joo, Sanghyun (The 5th R&D Institute, Agency for Defense Development)
  • 투고 : 2016.09.29
  • 심사 : 2017.03.27
  • 발행 : 2017.07.01

초록

무인 자율 주행 차량이 야지 환경에서 안전하게 주행하기 위해서는 차량의 주행 안정성이 반드시 고려되어야 한다. 본 논문에서는 실시간 주행 안정성 분석을 위한 자율 주행 시뮬레이션에 적용되는 경로 추종 제어기를 제시한다. 경로 추종 제어기는 Preview 거리를 사용하여 차량의 지향 각을 제어하고, 요 모멘트 관측기로부터 추정된 외란 모멘트를 보상하여 지향 각 오차와 횡 방향 거리 오차를 감소시킨다. 곡선 경로에서는 곡률을 이용하여 차량의 주행 속도를 결정한다. 대상 차량은 6X6 스키드 조향 차량이기 때문에 6개의 휠에 서로 다른 구동력을 분배하는 방법을 사용하여 주어진 경로를 주행한다. ADAMS에서 모델링 된 차량을 MATLAB과 연동시켜 시뮬레이션하고, 경로 추종 제어기 성능을 검증하였다.

과제정보

연구 과제 주관 기관 : 국방과학연구소(Agency for Defence Development)

참고문헌

  1. Kang, J., Kim, W., Lee, J. and Yi, K., 2010, "Design, Implementation, and Test of Skid Steering-based Autonomous Driving Controller for a Robotic Vehicle with Articulated Suspension," Journal of Mechanical Science and Technology, Vol. 24, No. 3, pp. 793-800. https://doi.org/10.1007/s12206-010-0115-z
  2. Hong, S., Choi, J.-S., Kim, H.-W., Won, M.-C., Shin, S.-C., Rhee, J.-S. and Park, H., 2009, "A Path Tracking Control Algorithm for Underwater Mining Vehicles," Journal of Mechanical Science and Technology 23, pp. 2030-2037. https://doi.org/10.1007/s12206-009-0436-y
  3. KRZYSZTOF KOZLOWSKI, DARIUSZ PAZDERSKI, 2004, "Modeling and Control of a 4-wheel Skid-steering Mobile Robot," Int. J. Appl. Math. Comput. Sci., Vol. 14, No. 4, pp. 477-496.
  4. Lhomme-Desages, D., Grand, Ch. and Guinot, J-C., 2007, "Trajectory Control of a Four-wheel Skid-steering Vehicle Over Soft Terrain using a Physical Interaction Model," IEEE International Conference on Robotics and Automation, pp. 1164-1169.
  5. Yi, J., Song, D., Zhang, J. and Goodwin, Z., "Adaptive Trajectory Tracking Control of Skidsteering Mobile Robots," 2007, IEEE International Conference on Robotics and Automation, pp. 2605-2610.
  6. Cho, W., Yoon, J., Yim, S., Koo, B. and Yi, K., 2010, "Estimation of Tire Forces for Application to Vehicle Stability Control," IEEE Trans. Veh. Technol., Vol. 59, No. 2, pp. 638-649. https://doi.org/10.1109/TVT.2009.2034268
  7. Jiang, K., Pavelescu, A., Victorino, A. C. and Charara, A., 2014, "Estimation of Vehicle's Vertical and Lateral Tire Forces Considering Road Angle and Road Irregularity," 17th IEEE conference of Intelligent Transportation Systems (ITSC), pp. 342-347.
  8. Fiala, E., 1954, "Lateral Forces on Rolling Pneumatic Tires," Zeitschrift VDI, 96, pp. 973-979.
  9. Rajamani, R., Piyabongkarn, D., Lew, J. and Grogg, J., 2006, "Algorithms for Real Time Estimation of Individual Wheel Tire-Road Friction Coefficients," Proceedings of American Control Conference, pp. 4682-4687.