DOI QR코드

DOI QR Code

Improved Control Strategy for T-type Isolated DC/DC Converters

  • Liu, Dong (Department of Energy Technology, Aalborg University) ;
  • Deng, Fujin (School of Electrical Engineering, Southeast University) ;
  • Wang, Yanbo (Department of Energy Technology, Aalborg University) ;
  • Chen, Zhe (Department of Energy Technology, Aalborg University)
  • Received : 2017.01.22
  • Accepted : 2017.04.18
  • Published : 2017.07.20

Abstract

T-type isolated DC/DC converters have recently attracted attention due to their numerous advantages, including few components, low cost, and symmetrical operation of transformers. This study proposes an improved control strategy for increasing the efficiency of T-type isolated DC/DC converters. Under the proposed strategy, the primary circulating current flows through the auxiliary switches (metal-oxide-semiconductor field-effect transistors) instead of their body diodes in free-wheeling periods. Such feature can reduce conduction losses, thereby improving the efficiency of T-type isolated DC/DC converters. The operation principles and performances of T-type isolated DC/DC converters under the proposed control strategy are analyzed in detail and verified through the simulation and experimental results.

References

  1. F. Blaabjerg, Z. Chen, and S. B. Kjaer, "Power electronics as efficient interface in dispersed power generation systems," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1184-1194, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833453
  2. M. Yilmaz and P. T. Krein, "Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces", IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5673-5689, Dec. 2013. https://doi.org/10.1109/TPEL.2012.2227500
  3. S. Y. Kim, H. S. Song, and K. Nam, "Idling port isolation control of three-port bidirectional converter for EVs", IEEE Trans. Power Electron., Vol. 27, No. 5, pp. 2495-2506, May 2012. https://doi.org/10.1109/TPEL.2011.2172225
  4. T. Hirose and H. Matsuo, "Standalone hybrid wind-solar power generation system applying dump power control without dump load", IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 988-997, Feb. 2012. https://doi.org/10.1109/TIE.2011.2159692
  5. H. Wu, P. Xu, H. Hu, Z. Zhou, and Y. Xing, "Multiport converters based on integration of full-bridge and bidirectional DC-DC topologies for renewable generation systems", IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 856-869, Feb. 2014. https://doi.org/10.1109/TIE.2013.2254096
  6. Z. Liang, R. Guo, J. Li, and A. Q. Huang, "A high-efficiency PV module integrated DC/DC converter for PV energy harvest in FREEDM systems," IEEE Trans. Power Electron., Vol. 26, No. 3, pp. 897-909, Mar. 2011. https://doi.org/10.1109/TPEL.2011.2107581
  7. D. Liu, F. Deng, and Z. Chen, "Five-level active-neutral-point-clamped DC/DC converter for medium voltage DC grids," IEEE Trans. Power Electron., Vol. 32, No. 5, pp. 3402-3412, May 2017. https://doi.org/10.1109/TPEL.2016.2585618
  8. B. Zhao, Q. Song, and W. Liu, "Efficiency characterization and optimization of isolated bidirectional DC-DC converter based on dual-phase-shift control for DC distribution application", IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1711-1727, Apr. 2013. https://doi.org/10.1109/TPEL.2012.2210563
  9. C. Mi, H. Bai, C. Wang, and S. Gargies, "Operation, design and control of dual H-bridge-based isolated bidirectional DC-DC converter," IET Power Electron., Vol. 1, No. 4, pp. 507-517, Dec. 2008. https://doi.org/10.1049/iet-pel:20080004
  10. U. Prasanna and A. Rathore, "Extended range ZVS active-clamped current-fed full-bridge isolated DC/DC converter for fuel cell applications: Analysis, design and experimental results," IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2661-2672, Jul. 2013. https://doi.org/10.1109/TIE.2012.2194977
  11. F. Krismer and J. W. Kolar, "Efficiency-optimized high-current dual active bridge converter for automotive applications," IEEE Trans. Ind. Electron., Vol. 59, No. 7, pp. 2745-2760, Jul. 2012. https://doi.org/10.1109/TIE.2011.2112312
  12. F. Sedaghati, S. H. Hosseini, M. Sabahi, and G. B. Gharehpetian, "Extended configuration of dual active bridge DC-DC converter with reduced number of switches," IET Power Electron., Vol. 8, No. 3, pp. 401-416, Mar. 2015. https://doi.org/10.1049/iet-pel.2014.0375
  13. F. Canales, P. Barbosa, and F. C. Lee, "A zero-voltage and zero-current switching three-level DC/DC converter," IEEE Trans. Power Electron., Vol. 17, No. 6, pp. 898-904, Nov. 2002. https://doi.org/10.1109/TPEL.2002.805609
  14. X. Ruan, B. Li,Q. Chen, S. C. Tan, and C.K. Tse, "Fundamental considerations of three-level DC-DC converters: Topologies, analyses, and control," IEEE Trans. Circuits Syst. I, Reg. Papers., Vol. 55, No. 11, pp. 3733-3743, Dec. 2008. https://doi.org/10.1109/TCSI.2008.927218
  15. B. Lin and C. Chao, "Analysis of an interleaved three-level ZVS converter with series-connected transformers," IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3088-3099, Jul. 2013. https://doi.org/10.1109/TPEL.2012.2221745
  16. Y. Shi, and X. Yang, "Wide range soft switching PWM three-level DC-DC converters suitable for industrial applications," IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 603-616, Feb. 2014. https://doi.org/10.1109/TPEL.2013.2258357
  17. Y. Jang, and M. Jovanovic, "A new three-level soft-switched converter," IEEE Trans. Power Electron., Vol. 20, No. 1, pp. 75-81, Jan. 2005. https://doi.org/10.1109/TPEL.2004.839832
  18. W. Li, S. Zong, F. Liu, H. Yang, X. He, and B. Wu, "Secondary-side phase-shift-controlled ZVS DC/DC converter with wide voltage gain for high input voltage applications," IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5128-5139, Nov. 2013. https://doi.org/10.1109/TPEL.2013.2242490
  19. Z. Guo, K. Sun, and D. Sha, "Improved ZVS three-level DC-DC converter with reduced circulating loss," IEEE Trans. Power Electron., Vol. 31, No. 9, pp. 6394-6404, Dec. 2015. https://doi.org/10.1109/TPEL.2015.2505169
  20. X. Yu, K. Jin, and Z. Liu, "Capacitor voltage control strategy for half-bridge three-level DC/DC converter," IEEE Trans. Power Electron., Vol. 29, No. 4, pp. 1557-1561, Apr. 2014. https://doi.org/10.1109/TPEL.2013.2279173
  21. B. Lin and S. Zhang, "Analysis and implementation of a three-level hybrid DC-DC converter with the balanced capacitor voltages," IET Power Electron., Vol. 9, No. 3, pp. 457-465, Mar. 2016. https://doi.org/10.1049/iet-pel.2015.0230
  22. D. Liu, F. Deng, Z. Gong, and Z. Chen, "Input-parallel output-parallel (IPOP) three-level (TL) DC/DC converters with interleaving control strategy for minimizing and balancing capacitor ripple currents," IEEE J. Emerg. Sel. Topics Power Electron., to be published. DOI: 10.1109/JESTPE.2017.2649221.
  23. M. Schweizer and J. W. Kolar, "Design and implementation of a highly efficient three-level T-type converter for low-voltage applications", IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 899-907, Feb. 2013. https://doi.org/10.1109/TPEL.2012.2203151
  24. U.-M. Choi, F. Blaabjerg, and K.-B. Lee, "Reliability improvement of a T-type three-level inverter with fault-tolerant control strategy," IEEE Trans. Power Electron., Vol. 30, No. 5, pp. 2660-2673, May 2015. https://doi.org/10.1109/TPEL.2014.2325891
  25. G. H. Aghdam, "Optimised active harmonic elimination technique for three-level T-type inverters," IET Power Electron., Vol. 6, No. 3, pp. 425-433, Mar. 2013. https://doi.org/10.1049/iet-pel.2012.0492
  26. P. Alemi, S.-Y. Jeong, and D.-C. Lee, "Active damping of LLCL filters using PR control for grid-connected three-level T-type converters," Journal of Power Electronics, Vol. 15, No. 3, pp. 786-795, May 2015. https://doi.org/10.6113/JPE.2015.15.3.786
  27. G. E. Sfakianakis, J. Everts, H. Huisman, T. Borrias, C. G. E. Wijnands, and E. A. Lomonova, "Charge-based ZVS modulation of a 3-5 level bidirectional dual active bridge DC-DC converter," in Proc. Energy Conversion Congress and Exposition, 2016.
  28. D. G. Bandeira, S. A. Mussa, and I. Barbi, "A ZVS-PWM T-type isolated DC-DC converter," in Proc. 1th Annu. Southern Power Electron, Nov/Dec. 2015.
  29. D. G. Bandeira and I. Barbi, "A T-type isolated zero voltage switching DC-DC converter with capacitive output," IEEE Trans. Power Electron., to be published.
  30. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, "A survey of wide bandgap power semiconductor devices," IEEE Trans. Power Electron., Vol. 29, No. 5, pp. 2155-2163, May 2014. https://doi.org/10.1109/TPEL.2013.2268900
  31. I. O. Lee and G. W. Moon, "A new asymmetrical half-bridge converter with zero DC-offset current in transformer," IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2297-2306, May 2013. https://doi.org/10.1109/TPEL.2012.2218258
  32. M. T. Zhang, M. M. Jovanovic, and F. C. Lee, "Design considerations and performance evaluations of synchronous rectifications in flyback converters," IEEE Trans. Power Electron., Vol. 13, No. 3, pp. 538-546, May 1998.
  33. D. Graovac, M. Purschel, and A. Kiep, "MOSFET power losses calculation using the data-sheet parameters," Infineon Technol., Dresden,Germany, Jul. 2006, Appl. note.