DOI QR코드

DOI QR Code

An Interleaving Scheme for DC-link Current Ripple Reduction in Parallel-Connected Generator Systems

  • Jeong, Min-Gyo (Department of Electrical and Computer Engineering, Ajou University) ;
  • Shin, Hye Ung (Department of Electrical and Computer Engineering, Ajou University) ;
  • Baek, Ju-Won (Power Conversion Research Center, Korea Electrotechnology Research Institute) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2016.12.23
  • Accepted : 2017.04.12
  • Published : 2017.07.20

Abstract

This paper presents an interleaving scheme for parallel-connected power systems to reduce the DC-link current ripple. A paralleled generator system generates current ripple by the Pulse Width Modulation (PWM) of each generator side converter. The current ripple in the DC-link degrades the efficiency of the whole generator system and decreases the lifetime of the DC-link capacitors. To mitigate these issues, the expression of the DC-link current is derived by a double-integral Fourier analysis while considering the modulation schemes. Optimized interleaving angles for the parallel generator system are obtained based on an analysis to minimize the dominant current harmonics component. Finally, the proposed interleaving scheme reduces the RMS value of the DC-link current ripple. Simulation and experimental results verify the effectiveness of the proposed interleaving scheme.

Acknowledgement

Grant : Demonstration Study for Low Voltage Direct Current Distribution Network in an Island

Supported by : KEPCO, National Research Foundation of Korea (NRF)

References

  1. A. Sanchez-Ruiz, M. Mazuela, S. Alvarez, G. Abad, and I. Baraia, "Medium voltage-high power converter topologies comparison procedure, for a 6.6 kV drive application using 4.5 kV IGBT modules," IEEE Trans. Ind. Electron., Vol. 59, No. 3, pp. 1462-1476, Mar. 2012. https://doi.org/10.1109/TIE.2011.2162213
  2. H. G. Jeong, H. S. Roh, and K. B. Lee, "An improved maximum power point tracking method for wind power system," Energies, pp. 1339-1354, May 2012.
  3. K. W. Park and K. B. Lee, "Hardware simulator development for a 3-parallel grid-connected PMSG wind power system," Journal of Power Electronics, Vol. 10, No. 5, pp. 555-562, Sep. 2010. https://doi.org/10.6113/JPE.2010.10.5.555
  4. K. S. Ahn, N. S. Choi, E. C. Lee, and H. J. Kim, "A study on a carrier based PWM having constant common mode voltage and minimized switching frequency in three-level inverter," J. Electr. Eng. Technol., Vol. 11, No. 2, pp. 393-404, Mar. 2016. https://doi.org/10.5370/JEET.2016.11.2.393
  5. J. Ridruguez, S. Bernet, W. Bin, J. O. Pontt, and S. Kouro, "Multilevel voltage-source-converter topologies for industrial medium-voltage drives," IEEE Trans. Ind. Electron., Vol. 54, No. 6, pp. 2930-2945, Dec. 2007. https://doi.org/10.1109/TIE.2007.907044
  6. T. S. Nam, H. J. Kim, S. M. Kim, G. T. Son, Y. H. Chung, J. W. Park, C. K. Kim, and K. Hur, "Trade-off strategies in designing capacitor voltage balancing schemes for modular multilevel converter HVDC," J. Electr. Eng. Technol., Vol. 11, No. 4, pp. 829-838, Jun. 2016. https://doi.org/10.5370/JEET.2016.11.4.829
  7. R. Li and D. Xu, "Parallel operation of full power converters in permanent-magnet direct-drive wind power generation system," IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1619-1629, Apr. 2013. https://doi.org/10.1109/TIE.2011.2148684
  8. J. S. S. Prasad and G. Narayanan, "Minimization of grid current distortion in parallel-connected converters through carrier interleaving," IEEE Trans. Ind. Electron., Vol. 61, No. 1, pp. 76-91, Jan. 2014. https://doi.org/10.1109/TIE.2013.2245620
  9. B. M. H. Jassim, B. Zahawi, and D. J. Atkinson, "Control of parallel connected three-phase pwm converters without inter-module reactors," J. Power Electron., Vol. 15, No. 1, pp. 116-122, Jan. 2015. https://doi.org/10.6113/JPE.2015.15.1.116
  10. L. shen, S. Bozhko, G. Asher, C. Patel, and P. Wheeler, "Active DC-link capacitor harmonic current reduction in two-level back-to-back converter," IEEE Trans. Power Electron., Vol. 31, No. 10, pp. 6947-6954, Oct. 2016. https://doi.org/10.1109/TPEL.2015.2511304
  11. R. Ramos, D. Biel, E. Fossas, and F. Guinjoan, "Interleaving quasi-sliding-mode control of parallel-connected buck-based inverters," IEEE Trans. Ind. Electron., Vol. 55, No. 11, pp. 3865-3873, Nov. 2008. https://doi.org/10.1109/TIE.2008.2006016
  12. Z. Di, F. Wang, R. Burgos, L. Rixin, and D. Boroyevich, "Impact of interleaving on AC passive components of paralleled three-phase voltage-source converters," IEEE Trans. Ind. Appl., Vol. 46, No. 3, pp. 1042-1054, May 2010. https://doi.org/10.1109/TIA.2010.2045336
  13. G. Gohil, L. Vede, R. Maheshwari, R. Teodorescu, T. Kerekes, and F. Blaabjerg, "Parallel interleaved VSCs: influence of the PWM scheme on the design of the coupled inductor," in Conf. Rec. of IEEE IECON Annu. Meeting, pp. 1693-1699, 2014.
  14. L. Bede, G. Gohil, T. Kerekes, and R. Teodorescu, "Optimal interleaving angle determination in multi paralleled converters considering the DC current ripple and grid current THD," in Conf. IEEE Power Electron. and ECCE Asia, pp. 1195-1202, 2015.
  15. S. T. Kim and J. W. Park, "Compensation of power fluctuations of PV generation system by SMES based on interleaving technique," J. Electr. Eng. Technol., Vol. 10, No. 5, pp. 1983-1988, Sept. 2015. https://doi.org/10.5370/JEET.2015.10.5.1983
  16. S. J. Lee, J. H. Lee, and K. B. Lee, "Reduction of DC-link current ripple in unbalanced three-parallel PV module condition," in IEEE conf. and Expo., ITEC Asia-Pacific, 2016.
  17. Z. Di, F. Wang, R. Burgos, L. Rixin, and D. Boroyevich, "DC-link ripple current reduction for paralleled three-phase voltage-source converters with interleaving," IEEE Trans. Power Electrons., Vol. 26, No. 6, pp. 1741-1753, Jun. 2011. https://doi.org/10.1109/TPEL.2010.2082002
  18. H. Ye and A. Emadi, "An interleaving scheme to reduce DC-link current harmonics of dual traction inverters in hybrid electric vehicles," in Proc. IEEE APEC, pp. 3205-3211, 2014.
  19. L. Belhadji, S. Bacha, I. Munteanu, A. Rumeau, and D. Roye, "Adaptive MPPT applied to variable-speed microhydropower plant," IEEE Trans. Energy Convers., Vol. 28, No. 1, pp. 34-43, Mar. 2013. https://doi.org/10.1109/TEC.2012.2220776
  20. J. H. Lee, S. H. Lee, and S. K. Sul, "Variable-speed engine generator with supercapacitor: isolated power generation system and fuel efficiency," IEEE Trans. Ind. Appl., Vol. 45, No. 6, pp. 2130-2135, Nov./Dec. 2009. https://doi.org/10.1109/TIA.2009.2031891
  21. R. D. Middlebrook, "Predicting modulator phase lag in PWM converter feedback loops," Proc. of Powercon 8, pp. H-4.1-H-4.6, 1981.
  22. D. Perreault and G. C. Verghese, "Time-varying effects and averaging issues in models for current-mode control," IEEE Trans. Power Electron., Vol. 12, No. 3, pp. 453-461, May 1997. https://doi.org/10.1109/63.575673
  23. D. G. Holmes and T.A. Lipo, Pulse Width Modulation for Power Converters-Principle and Practice. New York/Piscataway, NJ: Wiley IEEE Press, 2003.
  24. I. Deslauriers, N. Avidiu, and B. T. Ooi, "Naturally sampled triangle carrier PWM bandwidth limit and output spectrum," IEEE Trans. Power Electron., Vol. 20, No. 1, pp. 100-106, Jan. 2005. https://doi.org/10.1109/TPEL.2004.839829
  25. D. G. Holmes and B. P. Mcgrath, "Opportunities for harmonic cancellation with carrier-based PWM for two-level and multilevel cascaded converters," IEEE Trans. Ind. Appl., Vol. 37, No. 2, pp. 574-582, Jan. 2005.
  26. M. H. Bierhoff and F. W. Fuchs, "DC-link harmonics of three-phase voltage-source converters influenced by the pulsewidth-modulation strategy-an analysis," IEEE Trans. Ind. Electron., Vol. 55, No. 5, pp. 2085-2092, May 2008. https://doi.org/10.1109/TIE.2008.921203
  27. S. Jayawant and J. Sun "Double-integral fourier analysis of interleaved pulse width modulation," in Proc. Comput. Power Electron. Workshop, pp. 34-39, 2006.