DOI QR코드

DOI QR Code

Comprehensive Aeromechanics Predictions on Air and Structural Loads of HART I Rotor

  • Received : 2016.09.13
  • Accepted : 2017.02.11
  • Published : 2017.03.30

Abstract

The aeromechanics predictions of HART I rotor obtained using a computational structural dynamics (CSD) code are evaluated against the wind tunnel test data. The flight regimes include low speed descending flight at an advance ratio of ${\mu}=0.151$ and cruise condition at ${\mu}=0.229$. A lifting-line based unsteady airfoil theory with C81 table look-up is used to calculate the aerodynamic loads acting on the blade. Either rolled-up free wake or multiple-trailer wake with consolidation (MTC) model is employed for the free vortex wake representation. The measured blade properties accomplished recently are used to analyze the rotor for the up-to-date computations. The comparison results on airloads and structural loads of the rotor show good agreements for descent flight and fair for cruise flight condition. It is observed that MTC model generally improves the correlation against the measured data. The structural loads predictions for all measurement locations of HART I rotor are investigated. The dominant harmonic response of the structural loads is clearly captured with MTC model.

Acknowledgement

Supported by : KEIT, Konkuk University

References

  1. Yu, Y. H., Gmelin, B., Heller, H., Philippe, J. J., Mercker, E. and Preisser, J. S., "HHC Aeroacoustics Rotor Test at the DNW - The Joint German/ French/US HART Project", Proceedings of the 20th European Rotorcraft Forum, Amsterdam, Netherlands, Oct. 4-7, 1994.
  2. Yu, Y. H., Tung, C., van der Wall, B. G., Pausder, H. J., Burley, C., Brooks, T., Beaumier, P., Delriuex, Y., Mercker, E. and Pengel, K., "The HART-II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Control (HHC) Inputs - The Joint German/French/Dutch/US Project", American Helicopter Society 58th Annual Forum Proceedings, Montreal, Canada. June 11-13, 2002.
  3. van der Wall, B. G., "A Comprehensive Rotary-Wing Database for Code Validation: The HART II International Workshop", Aeronautical Journal, Vol. 115, No. 1163, 2011, pp. 91-102. https://doi.org/10.1017/S0001924000005480
  4. van der Wall, B. G., Lim, J. W., Smith, M. J., Jung, S. N., Bailly, J., Baeder, J. D. and Boyd, Jr., D. D., "The HART II International Workshop: An Assessment of the State-of-the Art in Comprehensive Code Prediction", CEAS Aernautical Journal, Vol. 4, No. 3, July 2013, pp. 223-252. https://doi.org/10.1007/s13272-013-0077-9
  5. Smith, M. J., Lim, J. W., van der Wall, B. G., Baeder, J. D., Biedron, R. T., Boyd, Jr., D. D., Jayaraman, B., Jung, S. N. and Min, B. Y., "The HART II International Workshop: An Assessment of the State of the Art in CFD/CSD Prediction", CEAS Aernautical Journal, Vol. 4, No. 4, Dec. 2013, pp. 345-372. https://doi.org/10.1007/s13272-013-0078-8
  6. Tung, C., Gallman, J. M., Kube, R., Wagner, W., van der Wall, B., Brooks, T. F., Burley, C. L., Boyd, Jr., D. D., Rahier, G. and Beaumier, P., "Prediction and Measurement of Blade- Vortex Interaction Loading", 1st CEAS/AIAA Aeroacoustics Conference Proceedings, Munich, Germany, June 12-15, 1995.
  7. Lim, J. W., Tung, C. and Yu, Y. H., "Prediction of Blade- Vortex Interaction Airloads with Higher-Harmonic Pitch Controls Using the 2GCHAS Comprehensive Code", Journal of Pressure Vessel Technology, Vol. 123, No. 4, Nov. 2001, pp. 469-474. https://doi.org/10.1115/1.1401025
  8. Lim, J. W., Yu, Y. H. and Johnson, W., "Calculation of Rotor Blade-Vortex Interaction Airloads Using a Multiple- Trailer Free-Wake Model", Journal of Aircraft, Vol. 40, No. 6, Nov.-Dec. 2003, pp. 1123-1130. https://doi.org/10.2514/2.7200
  9. Yeo, H. and Johnson, W., "Assessment of Comprehensive Analysis Calculation of Airloads on Helicopter Rotors", Journal of Aircraft, Vol. 42, No. 5, 2005, pp. 1218-1228. https://doi.org/10.2514/1.11595
  10. Yeo, H. and Johnson, W., "Prediction of Rotor Structural Loads with Comprehensive Analysis", Journal of the American Helicopter Society, Vol. 53, No. 2, 2008, pp. 193- 209. https://doi.org/10.4050/JAHS.53.193
  11. Jung, S. N., You, Y. H., Lau, B. H., Johnson, W. and Lim, J., "Evaluation of Rotor Structural and Aerodynamic Loads Using Measured Blade Properties", Journal of the American Helicopter Society, Vol. 58, No. 4, Oct. 2013.
  12. Jung, S. N. and Lau, B. H., "Determination of HART I Blade Structural Properties by Laboratory Testing", NASA CR 2012-216039, Aug. 2012.
  13. Johnson, W., CAMRAD II: Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Johnson Aeronautics, Palo Alto, CA, 1992.
  14. Splettstoesser, W. R., Kube, R., Seelhorst, U., Wagner, W., Boutier, A., Micheli, F., Mercker, E. and Pengel, K., Higher Harmonic Control Aeroacoustic Rotor Test (HART) - Test Documentation and Representative Results, German Aerospace Center (DLR), Inst. Rept. IB-129-95/28, Braunschweig, Germany, Dec. 1995.
  15. Brooks, T. F., Jolly, Jr., J. R. and Marcolini, M. A., "Determination of Source Contributions Using Scaled Model Data", NASA TP 2825, Aug. 1988.
  16. Sa, J. H., You, Y. H., Park, J. S., Park, S. H. and Jung, S. N., "Validation of HART II Structural Dynamics Predictions Based on Prescribed Airloads", International Journal of Aeronautical and Space Sciences, Vol. 13, No. 3, Sept. 2012, pp. 349-360. https://doi.org/10.5139/IJASS.2012.13.3.349
  17. You, Y. H., Sa, J. H., Park, J. S., Park, S. H. and Jung, S. N., "Modern Computation Fluid Dynamics/Structural Dynamics Simulation for a Helicopter in Descent", Journal of Aircraft, Vol. 50, No. 5, Sept. 2013, pp. 262-276. https://doi.org/10.2514/1.C031818