DOI QR코드

DOI QR Code

Cure Characteristics, Mechanical Properties, Abrasion Property and Thermal Properties of EVM/EPM Blends Containing Flame Retardants

  • Sung, Il Kyung (Dept. of Polymer Engineering, Pukyong National University) ;
  • Lee, Won Ki (Dept. of Polymer Engineering, Pukyong National University) ;
  • Park, Chan Young (Dept. of Polymer Engineering, Pukyong National University)
  • Received : 2017.05.12
  • Accepted : 2017.05.25
  • Published : 2017.06.30

Abstract

The curing behavior, mechanical properties, hot-air aging resistance, abrasion properties,thermal properties, etc., of EVM/EPM/APP (ammonium polyphosphate)/DPER (dipentaerythritol)/EG (expandable graphite) and EVM/EPM/ATH (aluminium trihydroxide) flame retarding systems in ethylene vinyl acetate rubber (EVM) blends with EPM (ethylene propylene rubber) were sequentially examined. For both flame retarding systems, the torque values increased with the content of EPM rubber and with the vulcanization time. As the content of EPM rubber increased, the scorch time became shorter, whereas the optimum cure time followed an increasing trend. For the EVM/EPM/APP/DPER/EG flameretarding system, as the content of EPM rubber increased, the hardness did not change,whereas the tensile strength and elongation at break decreased. A hot-air aging resistance test at $150^{\circ}C$ showed that the heat resistance decreased with the EPM content regardless of the kinds and contents of flame retardants. As the EPM content increased, the abrasion rate became higher and the abrasion resistance of the EVM/EPM/APP/DPER/EG flame retarding systems exceeded that of the EVM/EPM/ATH flame retarding counterparts. In comparison with the EVM/EPM/ATH flame retarding systems, the thermal stability of the EVM/EPM/APP/DPER/EG flame retarding system showed an increasing tendency.

Acknowledgement

Supported by : 부경대학교

References

  1. Y. Qian, P. Wei, X. Zhao, P. Jiang, and H. Yu, "Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites", Fire. Mater., 37, 1 (2013). https://doi.org/10.1002/fam.1126
  2. S. Y. Lu, I. Hamerton, "Recent developments in the chemistry of halogen-free flame retardant polymers", Prog. Polym. Sci., 27, 1661 (2002). https://doi.org/10.1016/S0079-6700(02)00018-7
  3. P. Georlette, J. Simons, and L. Costa, "Halogen-containing fire-retardant compounds", in: A.F. Grand, C.A. Wilkie (Eds.), "Fire Retardancy of Polymeric Materials", Marcel Dekker, Inc, New York.Basel, p. 245, (2000).
  4. L. S. Birnbaum and D. F. Staskal, "Brominated flame retardants: Cause for concern", Environ. Health Perspect., 112, 9 (2004). https://doi.org/10.1289/ehp.1121c9
  5. L. J. Qian, L. J. Ye, Y. Qiu, and S. R. Qu, "Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin", Polymer, 52, 5486 (2011). https://doi.org/10.1016/j.polymer.2011.09.053
  6. B. Perret, B. Schartel, K. Stoess, M. Ciesielski, J. Diederichs, M. Doering, et al., "Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation", Eur. Polym. J., 47, 1081 (2011). https://doi.org/10.1016/j.eurpolymj.2011.02.008
  7. M. Ciesielski, A. Schaefer, and M. Doering, "Novel efficient DOPO-based flame-retardants for PWB relevant epoxy resins with high glass transition temperatures", Polym. Adv. Technol., 19, 507 (2008).
  8. W. Liu, Z. Wang, L. Xiong, and L. Zhao, "Phosphorus containing liquid cycloaliphatic epoxy resins for reworkable environment-friendly electronic packaging materials", Polymer, 51, 4776 (2010). https://doi.org/10.1016/j.polymer.2010.08.039
  9. E. D. Weil and S. V. Levchik, "Commercial flame retardancy of unsaturated polyester and vinyl resins: review", J. Fire Sci., 22, 293 (2004). https://doi.org/10.1177/0734904104041210
  10. H. Kato, H. Adachi, and H. Fujita, "Innovation in flame and heat resistant EPDM formulations", Rubber Chem. Technol., 50, 287 (1983).
  11. D. F. Lawson, E. L. Kay, and D. T. Roberts Jr, "Mechanism of smoke inhibition by hydrated fillers", Rubber Chem. Technol., 48, 124 (1975). https://doi.org/10.5254/1.3545032
  12. C. Yang and W. T. Chen, "Effects of brominated flame retardants and crosslinking agents on the flame retardancy of rubbers", J. Appl. Polym. Sci., 36, 963 (1988). https://doi.org/10.1002/app.1988.070360418
  13. G. Janowska and L. Slusarski, "Effect of mineral fillers on thermal properties and flammability of cis-1,4-polyisoprene vulcanizates", J. Therm. Anal., 45, 1579 (1995). https://doi.org/10.1007/BF02547451
  14. K. E. George, in: Blends and Alloys, first ed., Chapman and Hall, London, 1993.
  15. L. N. Valsamis, M. R. Kearney, S. S. Dagli, D. D. Merhta, and A. P. Polchocki, "Phase morphology of a model polyblend fabricated in industrial mixers: Time and melt flow dependent supradomain structures", Adv. Polym. Technol., 8, 115 (1988). https://doi.org/10.1002/adv.1988.060080202
  16. M. H. Walters and D. N. Keyte, "Heterogeneous structure in blends of rubber polymers", Rubber Chem. Technol., 38, 62 (1965). https://doi.org/10.5254/1.3535639
  17. K. E. George, R. Joseph, and D. Francis, "Studies on NBR/PVC blends", J. Appl. Polym. Sci., 32, 2867 (1986). https://doi.org/10.1002/app.1986.070320102
  18. B. Ohlsson, H. Hassander, and B. Tornell, "Effect of the mixing procedure on the morphology and properties of compatibilized polypropylene/polyamide blends", Polymer, 39, 4715 (1998). https://doi.org/10.1016/S0032-3861(97)10291-9
  19. N. Kukaleva, M. Jollands, F. Cser, and E. Kosior, "Influence of phase structure on impact toughening of isotactic polypropylene by metallocene-catalyzed linear low-density polyethylene", J. Appl. Polym. Sci., 76, 1011 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000516)76:7<1011::AID-APP4>3.0.CO;2-Q
  20. S. N. Koklas, D. D. Sotiropoulou, J. K. Kallitsis, and N. K. Kalfoglou, "Compatibilization of chlorinated polyethylene/poly(vinyl chloride) blends with epoxidized natural rubber", Polymer, 32, 66 (1991). https://doi.org/10.1016/0032-3861(91)90563-X
  21. W. Yang, Q. Wu, L. Zhon, and S. Wang, "Styrene-co-acrylonitrile resin modifications of PVC/CPE blends", J. Appl. Polym. Sci., 66, 1455 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1455::AID-APP5>3.0.CO;2-D
  22. J. Li, R. A. Shanks, and Y. Long, "Mechanical properties and morphology of polyethylene-polypropylene blends with controlled thermal history", J. Appl. Polym. Sci., 76, 1151 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000516)76:7<1151::AID-APP19>3.0.CO;2-H
  23. J. Lyon, The chemistry and uses of fire retardant, Wiley Interscience, New York, 1970.
  24. A. Y. Coran and R. Patel, "Rubber-thermoplastic compositions. Part VIII. nitrile rubber polyolefin blends with technological compatibilization", Rubber Chem. Technol., 56, 1045 (1983). https://doi.org/10.5254/1.3538165
  25. Z. Z. Li and B. J. Qu, "Effects of gamma irradiation on the properties of flame-retardant EVM/magnesium hydroxide blends", Radiat. Phys. Chem., 69, 137 (2004). https://doi.org/10.1016/S0969-806X(03)00446-8
  26. S. G. Chen, Y. Zhang, R. Y. Wang, H. Y. Yu, M. Hoch, and S. R. Guo, "Mechanical properties, flame retardancy, hot-air ageing, and hot-oil ageing resistance of ethylene-vinyl acetate rubber/hydrogenated nitrile-butadiene rubber/magnesium hydroxide composites", J. Appl. Polym. Sci., 114, 3310 (2009). https://doi.org/10.1002/app.30620
  27. R. Brown, Physical testing of rubbers, 3rd ed.; Chapman and Hall: London, 1996.
  28. P. Sa-Nguanthammarong, "A study of abrasion resistance of silica-filled natural rubber and its improvement", Mahidol University (1999).
  29. F. S. Conant, "Rubber technology", chapter 5. 3rd. Va Nostrand, New York (1987).
  30. G. Camino, S. M. Lomakin, and M. Lazzari, "Polydimethylsiloxane thermal degradation Part 2. The degradation mechanisms", Polymer, 43, 2011 (2002). https://doi.org/10.1016/S0032-3861(01)00785-6