Approaches to Reduce the Contact Resistance by the Formation of Covalent Contacts in Graphene Thin Film Transistors

  • Na, Youngeun (Integrated Science and Engineering Division, Yonsei University) ;
  • Han, Jaehyun (School of Integrated Technology, Yonsei University) ;
  • Yeo, Jong-Souk (Integrated Science and Engineering Division, Yonsei University)
  • Received : 2017.06.22
  • Accepted : 2017.07.30
  • Published : 2017.07.31


Graphene, with a carrier mobility achieving up to $140,000cm^2/Vs$ at room temperature, makes it an ideal material for application in semiconductor devices. However, when the metal comes in contact with the graphene sheet, an energy barrier forms at the metal-graphene interface, resulting in a drastic reduction of the carrier mobility of graphene. In this review, the various methods of forming metal-graphene covalent contacts to lower the contact resistance are discussed. Furthermore, the graphene sheet in the area of metal contact can be cut in certain patterns, also discussed in this review, which provides a more efficient approach to forming covalent contacts, ultimately reducing the contact resistance for the realization of high-performance graphene devices.


Supported by : IITP (Institute for Information & communications Technology Promotion), NRF (National Research Foundation)


  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. 4, 611 (2010).
  2. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Science. 320, 1308 (2008).
  3. D. Prezzi, D. Varsano, A. Ruini, A. Marini, and E. Molinari, Phys. Rev. B. 77, 041404 (2008).
  4. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
  5. K. S. Novoselov, S. V. Morozov, T. M. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, Phys. Status Solidi B. 244, 4106 (2007).
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature. 438, 197 (2005).
  7. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science. 321, 385 (2008).
  8. F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dorr, Y. Mei, A. Rastelli, and O. G. Schmidt, Nano Lett. 10, 3453 (2010).
  9. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett. 92, 151911 (2008).
  10. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
  11. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature. 457, 706 (2009).
  12. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
  13. J. Han, J. Y. Lee, and J. S. Yeo, Carbon. 105, 205 (2016).
  14. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, Appl. Phys. Lett. 95, 209 (2009).
  15. J. Shen, Y. Zhu, X. Yang, and C. Li, Chem. Commun. 48, 3686 (2012).
  16. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Electroanalysis. 22, 1027 (2010).
  17. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).
  18. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Nat. Nanotechnol. 3, 654 (2008).
  19. F. Xia, D. B. Farmer, Y.-m. Lin, and P. Avouris, Nano Lett. 10, 715 (2010).
  20. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science. 342, 614 (2013).
  21. L. D. Carr, and M. T. Lusk, Nature Nanotechnol. 5, 316 (2010).
  22. Q. Zheng, Y. Geng, S. Wang, Z. Li, and J. K. Kim, Carbon. 48, 4315 (2010).
  23. C. Wang, Y. Liu, L. Lan, and H. Tan, Nanoscale. 5, 4454 (2013).
  24. P. Sutter, J. T. Sadowski, and E. Sutter, Phys. Rev. B. 80, 245411 (2009).
  25. S. Y. Zhou, G. H. Gweon, A. Fedorov, P. First, W. De Heer, D. H. Lee, F. Guinea, A. C. Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007).
  26. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7, 1643 (2007).
  27. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).
  28. D. W. Yue, C. H. Ra, X. C. Liu, D. Y. Lee, and W. J. Yoo, Nanoscale. 7, 825 (2014).
  29. G. Giovannetti, P. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
  30. K. Nagashio and A. Toriumi, Jpn. J. Appl. Phys. 50, 070108 (2011).
  31. C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. I. Kravchenko, and S. J. Pearton, J. Vac. Sci. Technol., B. 30, 060604 (2012).
  32. W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. Hight Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, Appl. Phys. Lett. 102, 183110 (2013).
  33. S. K. Hong, S. M. Song, O. Sul, and B. J. Cho, Carbon Lett. 14, 171 (2013).
  34. A. D. Franklin, S. J. Han, A. A. Bol, and V. Perebeinos, IEEE Electron Device Lett. 33, 17 (2012).
  35. A. Hsu, H. Wang, K. K. Kim, J. Kong, and T. Palacios, IEEE Electron Device Lett. 32, 1008 (2011).
  36. Q. Gao and J. Guo, APL Mater. 2, 056105 (2014).
  37. A. Krasheninnikov and F. Banhart, Nat. Mater. 6, 723 (2007).
  38. J. Han, J. Y. Lee, J. Choe, and J. S. Yeo, RSC Adv. 6, 76273 (2016).
  39. O. Lehtinen, I. L. Tsai, R. Jalil, R. R. Nair, J. Keinonen, U. Kaiser, and I. V. Grigorieva, Nanoscale. 6, 6569 (2014).
  40. A. Meersha, H. B. Variar, K. Bhardwaj, A. Mishra, S. Raghavan, N. Bhat, and M. Shrivastava, IEEE IEDM, 5.3.1 (2016).
  41. J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, and D. Snyder, Appl. Phys. Lett. 98, 053103 (2011).
  42. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano. 5, 26 (2010).
  43. Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, Nano Lett. 12, 414 (2011).
  44. C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, J. Appl. Phys. 108, 123711 (2010).
  45. W. S. Leong, C. T. Nai, and J. T. Thong, Nano Lett. 14, 3840 (2014).
  46. W. S. Leong, H. Gong, and J. T. Thong, ACS Nano. 8, 994 (2013).
  47. X. Chen, Y. J. Park, T. Das, H. Jang, J. B. Lee, and J. H. Ahn, Nanoscale. 8, 15181 (2016).
  48. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012).
  49. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep. 3, 1866 (2013).
  50. S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, Appl. Phys. Lett. 104, 183506 (2014).
  51. V. Passi, A. Gahoi, J. Ruhkopf, S. Kataria, F. Vaurette, E. Pallecchi, H. Happy, and M. C. Lemme, IEEE, 236 (2016).
  52. C. Cho, S. K. Lee, J. W. Noh, W. Park, S. Lee, Y. G. Lee, H. J. Hwang, C. G. Kang, M. H. Ham, and B. H. Lee, Appl. Phys. Lett. 106, 213107 (2015).
  53. J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, ACS Nano. 7, 3661 (2013).
  54. H. Y. Park, W. S. Jung, D. H. Kang, J. Jeon, G. Yoo, Y. Park, J. Lee, Y. H. Jang, J. Lee, S. Park, H. Y. Yu, B. Shin, S. Lee, and J. H. Park, Adv. Mater. 28, 864 (2015).