DOI QR코드

DOI QR Code

Approaches to Reduce the Contact Resistance by the Formation of Covalent Contacts in Graphene Thin Film Transistors

  • Na, Youngeun (Integrated Science and Engineering Division, Yonsei University) ;
  • Han, Jaehyun (School of Integrated Technology, Yonsei University) ;
  • Yeo, Jong-Souk (Integrated Science and Engineering Division, Yonsei University)
  • Received : 2017.06.22
  • Accepted : 2017.07.30
  • Published : 2017.07.31

Abstract

Graphene, with a carrier mobility achieving up to $140,000cm^2/Vs$ at room temperature, makes it an ideal material for application in semiconductor devices. However, when the metal comes in contact with the graphene sheet, an energy barrier forms at the metal-graphene interface, resulting in a drastic reduction of the carrier mobility of graphene. In this review, the various methods of forming metal-graphene covalent contacts to lower the contact resistance are discussed. Furthermore, the graphene sheet in the area of metal contact can be cut in certain patterns, also discussed in this review, which provides a more efficient approach to forming covalent contacts, ultimately reducing the contact resistance for the realization of high-performance graphene devices.

Acknowledgement

Supported by : IITP (Institute for Information & communications Technology Promotion), NRF (National Research Foundation)

References

  1. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photon. 4, 611 (2010). https://doi.org/10.1038/nphoton.2010.186
  2. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Science. 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  3. D. Prezzi, D. Varsano, A. Ruini, A. Marini, and E. Molinari, Phys. Rev. B. 77, 041404 (2008).
  4. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). https://doi.org/10.1103/RevModPhys.81.109
  5. K. S. Novoselov, S. V. Morozov, T. M. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, Phys. Status Solidi B. 244, 4106 (2007). https://doi.org/10.1002/pssb.200776208
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature. 438, 197 (2005). https://doi.org/10.1038/nature04233
  7. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science. 321, 385 (2008). https://doi.org/10.1126/science.1157996
  8. F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dorr, Y. Mei, A. Rastelli, and O. G. Schmidt, Nano Lett. 10, 3453 (2010). https://doi.org/10.1021/nl101533x
  9. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett. 92, 151911 (2008). https://doi.org/10.1063/1.2907977
  10. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008). https://doi.org/10.1021/nl0731872
  11. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature. 457, 706 (2009). https://doi.org/10.1038/nature07719
  12. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132
  13. J. Han, J. Y. Lee, and J. S. Yeo, Carbon. 105, 205 (2016). https://doi.org/10.1016/j.carbon.2016.04.039
  14. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, Appl. Phys. Lett. 95, 209 (2009).
  15. J. Shen, Y. Zhu, X. Yang, and C. Li, Chem. Commun. 48, 3686 (2012). https://doi.org/10.1039/c2cc00110a
  16. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Electroanalysis. 22, 1027 (2010). https://doi.org/10.1002/elan.200900571
  17. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010). https://doi.org/10.1038/nnano.2010.89
  18. I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim, and K. L. Shepard, Nat. Nanotechnol. 3, 654 (2008). https://doi.org/10.1038/nnano.2008.268
  19. F. Xia, D. B. Farmer, Y.-m. Lin, and P. Avouris, Nano Lett. 10, 715 (2010). https://doi.org/10.1021/nl9039636
  20. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science. 342, 614 (2013). https://doi.org/10.1126/science.1244358
  21. L. D. Carr, and M. T. Lusk, Nature Nanotechnol. 5, 316 (2010). https://doi.org/10.1038/nnano.2010.93
  22. Q. Zheng, Y. Geng, S. Wang, Z. Li, and J. K. Kim, Carbon. 48, 4315 (2010). https://doi.org/10.1016/j.carbon.2010.07.044
  23. C. Wang, Y. Liu, L. Lan, and H. Tan, Nanoscale. 5, 4454 (2013). https://doi.org/10.1039/c3nr00462g
  24. P. Sutter, J. T. Sadowski, and E. Sutter, Phys. Rev. B. 80, 245411 (2009). https://doi.org/10.1103/PhysRevB.80.245411
  25. S. Y. Zhou, G. H. Gweon, A. Fedorov, P. First, W. De Heer, D. H. Lee, F. Guinea, A. C. Neto, and A. Lanzara, Nat. Mater. 6, 770 (2007). https://doi.org/10.1038/nmat2003
  26. M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett. 7, 1643 (2007). https://doi.org/10.1021/nl070613a
  27. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011). https://doi.org/10.1063/1.3643444
  28. D. W. Yue, C. H. Ra, X. C. Liu, D. Y. Lee, and W. J. Yoo, Nanoscale. 7, 825 (2014).
  29. G. Giovannetti, P. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008). https://doi.org/10.1103/PhysRevLett.101.026803
  30. K. Nagashio and A. Toriumi, Jpn. J. Appl. Phys. 50, 070108 (2011). https://doi.org/10.7567/JJAP.50.070108
  31. C. W. Chen, F. Ren, G. C. Chi, S. C. Hung, Y. P. Huang, J. Kim, I. I. Kravchenko, and S. J. Pearton, J. Vac. Sci. Technol., B. 30, 060604 (2012). https://doi.org/10.1116/1.4754566
  32. W. Li, Y. Liang, D. Yu, L. Peng, K. P. Pernstich, T. Shen, A. R. Hight Walker, G. Cheng, C. A. Hacker, C. A. Richter, Q. Li, D. J. Gundlach, and X. Liang, Appl. Phys. Lett. 102, 183110 (2013). https://doi.org/10.1063/1.4804643
  33. S. K. Hong, S. M. Song, O. Sul, and B. J. Cho, Carbon Lett. 14, 171 (2013). https://doi.org/10.5714/CL.2013.14.3.171
  34. A. D. Franklin, S. J. Han, A. A. Bol, and V. Perebeinos, IEEE Electron Device Lett. 33, 17 (2012). https://doi.org/10.1109/LED.2011.2173154
  35. A. Hsu, H. Wang, K. K. Kim, J. Kong, and T. Palacios, IEEE Electron Device Lett. 32, 1008 (2011). https://doi.org/10.1109/LED.2011.2155024
  36. Q. Gao and J. Guo, APL Mater. 2, 056105 (2014). https://doi.org/10.1063/1.4876635
  37. A. Krasheninnikov and F. Banhart, Nat. Mater. 6, 723 (2007). https://doi.org/10.1038/nmat1996
  38. J. Han, J. Y. Lee, J. Choe, and J. S. Yeo, RSC Adv. 6, 76273 (2016). https://doi.org/10.1039/C6RA13344D
  39. O. Lehtinen, I. L. Tsai, R. Jalil, R. R. Nair, J. Keinonen, U. Kaiser, and I. V. Grigorieva, Nanoscale. 6, 6569 (2014). https://doi.org/10.1039/c4nr01918k
  40. A. Meersha, H. B. Variar, K. Bhardwaj, A. Mishra, S. Raghavan, N. Bhat, and M. Shrivastava, IEEE IEDM, 5.3.1 (2016).
  41. J. A. Robinson, M. LaBella, M. Zhu, M. Hollander, R. Kasarda, Z. Hughes, K. Trumbull, R. Cavalero, and D. Snyder, Appl. Phys. Lett. 98, 053103 (2011). https://doi.org/10.1063/1.3549183
  42. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano. 5, 26 (2010).
  43. Y. C. Lin, C. C. Lu, C. H. Yeh, C. Jin, K. Suenaga, and P. W. Chiu, Nano Lett. 12, 414 (2011).
  44. C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, J. Appl. Phys. 108, 123711 (2010). https://doi.org/10.1063/1.3524232
  45. W. S. Leong, C. T. Nai, and J. T. Thong, Nano Lett. 14, 3840 (2014). https://doi.org/10.1021/nl500999r
  46. W. S. Leong, H. Gong, and J. T. Thong, ACS Nano. 8, 994 (2013).
  47. X. Chen, Y. J. Park, T. Das, H. Jang, J. B. Lee, and J. H. Ahn, Nanoscale. 8, 15181 (2016). https://doi.org/10.1039/C6NR03318K
  48. Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012). https://doi.org/10.1002/adma.201104798
  49. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Sci. Rep. 3, 1866 (2013). https://doi.org/10.1038/srep01866
  50. S. M. Song, T. Y. Kim, O. J. Sul, W. C. Shin, and B. J. Cho, Appl. Phys. Lett. 104, 183506 (2014). https://doi.org/10.1063/1.4875709
  51. V. Passi, A. Gahoi, J. Ruhkopf, S. Kataria, F. Vaurette, E. Pallecchi, H. Happy, and M. C. Lemme, IEEE, 236 (2016).
  52. C. Cho, S. K. Lee, J. W. Noh, W. Park, S. Lee, Y. G. Lee, H. J. Hwang, C. G. Kang, M. H. Ham, and B. H. Lee, Appl. Phys. Lett. 106, 213107 (2015). https://doi.org/10.1063/1.4921797
  53. J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, ACS Nano. 7, 3661 (2013). https://doi.org/10.1021/nn400671z
  54. H. Y. Park, W. S. Jung, D. H. Kang, J. Jeon, G. Yoo, Y. Park, J. Lee, Y. H. Jang, J. Lee, S. Park, H. Y. Yu, B. Shin, S. Lee, and J. H. Park, Adv. Mater. 28, 864 (2015).