DOI QR코드

DOI QR Code

Unexpected Chemical and Thermal Stability of Surface Oxynitride of Anatase TiO2 Nanocrystals Prepared in the Afterglow of N2 Plasma

  • Jeon, Byungwook (Department of Chemistry and Department of Energy Systems Research, Ajou University) ;
  • Kim, Ansoon (Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Yu Kwon (Department of Chemistry and Department of Energy Systems Research, Ajou University)
  • Received : 2017.06.13
  • Accepted : 2017.07.03
  • Published : 2017.07.31

Abstract

Passivation of surface defects by the formation of chemically inert structure at the surface of $TiO_2$ nanocrystals can be potentially useful in enhancing their photocatalytic activity. In this regard, we have studied the surface chemical states of $TiO_2$ surfaces prepared by a treatment in the afterglow of $N_2$ microwave plasma using X-ray photoemission spectroscopy (XPS). We find that nitrogen is incorporated into the surface after the treatment up to a few atomic percent. Interestingly, the surface oxynitride layer is found to be chemically stable when it's in contact with water at room temperature (RT). The surface nitrogen species were also found to be thermally stable upon annealing up to $150^{\circ}C$ in the atmospheric pressure. Thus, we conclude that the treatment of oxide materials such as $TiO_2$ in the afterglow of $N_2$ plasma can be effective way to passivate the surface with nitrogen species.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev., 114, 9919-9986, (2014). https://doi.org/10.1021/cr5001892
  2. Q. Wei, K. Hirota, K. Tajima, and K. Hashimoto, Chem. Mater., 18, 5080-5087, (2006). https://doi.org/10.1021/cm061697b
  3. J. Nisar, Z. Topalian, A. De Sarkar, L. Osterlund, and R. Ahuja, ACS Appl. Mater. Interfaces, 5, 8516-8522, (2013). https://doi.org/10.1021/am4018835
  4. T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R.A. Varin, and F. Gu, ACS Appl. Mater. Interfaces, 5, 1892-1895, (2013). https://doi.org/10.1021/am302903n
  5. X. Yu, B. Jeon, and Y.K. Kim, ACS Catal., 5, 3316-3322, (2015). https://doi.org/10.1021/cs5020942
  6. S.Z. Islam, A. Reed, D.Y. Kim, and S.E. Rankin, Microporous Mesoporous Mater., 220, 120-128, (2016). https://doi.org/10.1016/j.micromeso.2015.08.030
  7. B. Li, Z. Zhao, Q. Zhou, B. Meng, X. Meng, and J. Qiu, Chem. Eur. J., 20, 14763-14770, (2014). https://doi.org/10.1002/chem.201402664
  8. C. Liu, Z. Ma, J. Li, and W. Wang, Plasma Sci. Technol., 8, 311, (2006). https://doi.org/10.1088/1009-0630/8/3/14
  9. S.Z. Islam, A. Reed, N. Wanninayake, D.Y. Kim, S.E. Rankin, and J. Phys. Chem. C, 120, 14069-14081, (2016). https://doi.org/10.1021/acs.jpcc.6b02622
  10. A. Ricard, J.-P. Sarrette, S.-G. Oh, and Y.K. Kim, Plasma Chem. Plasma Process., 1-12, (2016).
  11. A. Ricard, S.G. Oh, J. Jang, and Y.K. Kim, Curr. Appl. Phys., 15, 1453-1462, (2015). https://doi.org/10.1016/j.cap.2015.08.013
  12. H. Zerrouki, A. Ricard, and J.P. Sarrette, Contrib. Plasma Phys., 54, 827-837, (2014). https://doi.org/10.1002/ctpp.201400001
  13. A. Ricard, S.G. Oh, Plasma Sources Sci. Technol., 23, 045009, (2014). https://doi.org/10.1088/0963-0252/23/4/045009
  14. J. Afonso Ferreira, L. Stafford, R. Leonelli, and A. Ricard, J. Appl. Phys., 115, 163303, (2014). https://doi.org/10.1063/1.4872468
  15. H. Zerrouki, A. Ricard, and J.P. Sarrette, Contrib. Plasma Phys., 53, 599-604, (2013). https://doi.org/10.1002/ctpp.201300008
  16. A. Ricard, S.G. Oh, and V. Guerra, Plasma Sources Sci. Technol., 22, 035009, (2013). https://doi.org/10.1088/0963-0252/22/3/035009
  17. N. Kang, M. Lee, A. Ricard, and S.-g. Oh, Curr. Appl. Phys., 12, 1448-1453, (2012). https://doi.org/10.1016/j.cap.2012.04.009
  18. A. Ricard, H. Zerrouki, and J. Sarrette, J. Anal. Sci. Methods and Instrumentation, 5, 59-65, (2015). https://doi.org/10.4236/jasmi.2015.54007
  19. M.K. Boudam, B. Saoudi, M. Moisan, and A. Ricard, J. Phys. D: Appl. Phys., 40, 1694-1711, (2007). https://doi.org/10.1088/0022-3727/40/6/019
  20. H. Zerrouki, A. Ricard, and J.P. Sarrette, J. Phys. Conf. Ser., 550, 012045, (2014). https://doi.org/10.1088/1742-6596/550/1/012045
  21. A. Ricard, J.-P. Sarrette, B. Jeon, and Y.K. Kim, Curr. Appl. Phys., 17, 945-950, (2017). https://doi.org/10.1016/j.cap.2017.04.006
  22. Y.K. Kim, S. Park, K.-J. Kim, and B. Kim, J. Phys. Chem. C, 115, 18618-18624, (2011). https://doi.org/10.1021/jp204250z
  23. M. Batzill, E.H. Morales, and U. Diebold, Phys. Rev. Lett., 96, 026103, (2006). https://doi.org/10.1103/PhysRevLett.96.026103
  24. J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, and J. Am. Chem. Soc., 131, 12290-12297, (2009). https://doi.org/10.1021/ja903781h
  25. B. Kim, Z. Dohnalek, J. Szanyi, B.D. Kay, and Y.K. Kim, Surf. Sci., 652, 148-155, (2016). https://doi.org/10.1016/j.susc.2016.01.032
  26. D.C. Sorescu, C.N. Rusu, and J.T. Yates, J. Phys. Chem. B, 104, 4408-4417, (2000). https://doi.org/10.1021/jp993694a
  27. C.N. Rusu, J.T. Yates, J. Phys. Chem. B, 104, 1729-1737, (2000). https://doi.org/10.1021/jp992239b
  28. M. Sathish, B. Viswanathan, R.P. Viswanath, and C.S. Gopinath, Chem. Mater., 17, 6349-6353, (2005). https://doi.org/10.1021/cm052047v
  29. X. Chen, C. Burda, J. Phys. Chem. B, 108, 15446-15449, (2004). https://doi.org/10.1021/jp0469160
  30. F. Peng, L. Cai, L. Huang, H. Yu, and H. Wang, J. Phys. Chem. Solids, 69, 1657-1664, (2008). https://doi.org/10.1016/j.jpcs.2007.12.003