Unexpected Chemical and Thermal Stability of Surface Oxynitride of Anatase TiO2 Nanocrystals Prepared in the Afterglow of N2 Plasma

  • Jeon, Byungwook (Department of Chemistry and Department of Energy Systems Research, Ajou University) ;
  • Kim, Ansoon (Korea Research Institute of Standards and Science (KRISS)) ;
  • Kim, Yu Kwon (Department of Chemistry and Department of Energy Systems Research, Ajou University)
  • Received : 2017.06.13
  • Accepted : 2017.07.03
  • Published : 2017.07.31


Passivation of surface defects by the formation of chemically inert structure at the surface of $TiO_2$ nanocrystals can be potentially useful in enhancing their photocatalytic activity. In this regard, we have studied the surface chemical states of $TiO_2$ surfaces prepared by a treatment in the afterglow of $N_2$ microwave plasma using X-ray photoemission spectroscopy (XPS). We find that nitrogen is incorporated into the surface after the treatment up to a few atomic percent. Interestingly, the surface oxynitride layer is found to be chemically stable when it's in contact with water at room temperature (RT). The surface nitrogen species were also found to be thermally stable upon annealing up to $150^{\circ}C$ in the atmospheric pressure. Thus, we conclude that the treatment of oxide materials such as $TiO_2$ in the afterglow of $N_2$ plasma can be effective way to passivate the surface with nitrogen species.


Supported by : National Research Foundation of Korea (NRF)


  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev., 114, 9919-9986, (2014).
  2. Q. Wei, K. Hirota, K. Tajima, and K. Hashimoto, Chem. Mater., 18, 5080-5087, (2006).
  3. J. Nisar, Z. Topalian, A. De Sarkar, L. Osterlund, and R. Ahuja, ACS Appl. Mater. Interfaces, 5, 8516-8522, (2013).
  4. T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R.A. Varin, and F. Gu, ACS Appl. Mater. Interfaces, 5, 1892-1895, (2013).
  5. X. Yu, B. Jeon, and Y.K. Kim, ACS Catal., 5, 3316-3322, (2015).
  6. S.Z. Islam, A. Reed, D.Y. Kim, and S.E. Rankin, Microporous Mesoporous Mater., 220, 120-128, (2016).
  7. B. Li, Z. Zhao, Q. Zhou, B. Meng, X. Meng, and J. Qiu, Chem. Eur. J., 20, 14763-14770, (2014).
  8. C. Liu, Z. Ma, J. Li, and W. Wang, Plasma Sci. Technol., 8, 311, (2006).
  9. S.Z. Islam, A. Reed, N. Wanninayake, D.Y. Kim, S.E. Rankin, and J. Phys. Chem. C, 120, 14069-14081, (2016).
  10. A. Ricard, J.-P. Sarrette, S.-G. Oh, and Y.K. Kim, Plasma Chem. Plasma Process., 1-12, (2016).
  11. A. Ricard, S.G. Oh, J. Jang, and Y.K. Kim, Curr. Appl. Phys., 15, 1453-1462, (2015).
  12. H. Zerrouki, A. Ricard, and J.P. Sarrette, Contrib. Plasma Phys., 54, 827-837, (2014).
  13. A. Ricard, S.G. Oh, Plasma Sources Sci. Technol., 23, 045009, (2014).
  14. J. Afonso Ferreira, L. Stafford, R. Leonelli, and A. Ricard, J. Appl. Phys., 115, 163303, (2014).
  15. H. Zerrouki, A. Ricard, and J.P. Sarrette, Contrib. Plasma Phys., 53, 599-604, (2013).
  16. A. Ricard, S.G. Oh, and V. Guerra, Plasma Sources Sci. Technol., 22, 035009, (2013).
  17. N. Kang, M. Lee, A. Ricard, and S.-g. Oh, Curr. Appl. Phys., 12, 1448-1453, (2012).
  18. A. Ricard, H. Zerrouki, and J. Sarrette, J. Anal. Sci. Methods and Instrumentation, 5, 59-65, (2015).
  19. M.K. Boudam, B. Saoudi, M. Moisan, and A. Ricard, J. Phys. D: Appl. Phys., 40, 1694-1711, (2007).
  20. H. Zerrouki, A. Ricard, and J.P. Sarrette, J. Phys. Conf. Ser., 550, 012045, (2014).
  21. A. Ricard, J.-P. Sarrette, B. Jeon, and Y.K. Kim, Curr. Appl. Phys., 17, 945-950, (2017).
  22. Y.K. Kim, S. Park, K.-J. Kim, and B. Kim, J. Phys. Chem. C, 115, 18618-18624, (2011).
  23. M. Batzill, E.H. Morales, and U. Diebold, Phys. Rev. Lett., 96, 026103, (2006).
  24. J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, and J. Am. Chem. Soc., 131, 12290-12297, (2009).
  25. B. Kim, Z. Dohnalek, J. Szanyi, B.D. Kay, and Y.K. Kim, Surf. Sci., 652, 148-155, (2016).
  26. D.C. Sorescu, C.N. Rusu, and J.T. Yates, J. Phys. Chem. B, 104, 4408-4417, (2000).
  27. C.N. Rusu, J.T. Yates, J. Phys. Chem. B, 104, 1729-1737, (2000).
  28. M. Sathish, B. Viswanathan, R.P. Viswanath, and C.S. Gopinath, Chem. Mater., 17, 6349-6353, (2005).
  29. X. Chen, C. Burda, J. Phys. Chem. B, 108, 15446-15449, (2004).
  30. F. Peng, L. Cai, L. Huang, H. Yu, and H. Wang, J. Phys. Chem. Solids, 69, 1657-1664, (2008).