DOI QR코드

DOI QR Code

Investigation of the Driving Frequency Effect on the RF-Driven Atmospheric Pressure Micro Dielectric Barrier Discharges

  • Bae, Hyowon (Memory Division, Samsung Electronics) ;
  • Lee, Jung Yeol (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
  • Received : 2017.06.26
  • Accepted : 2017.07.30
  • Published : 2017.07.31

Abstract

The discharge characteristics of the radio frequency (RF) surface dielectric barrier discharge have been simulated for the investigation of the ratio of the ion transit time to the RF period. From one-dimensional particle-in-cell (PIC) simulation for a planar dielectric barrier discharge (DBD), it was observed that the high-frequency driving voltage confines the ions in the plasma because of a shorter RF period than the ion transit time. For two-dimensional surface dielectric barrier discharges, a fluid simulation is performed to investigate the characteristics of RF discharges from 1 MHz to 40 MHz. The ratio of the peak density to the average density decreases with the increasing frequency, and the spatiotemporal discharge patterns change abruptly with the change in the ratio of ion transit time to the RF period.

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. H. W. Lee, G. Y. Park, Y. S. Seo, Y. H. Im, S. B. Shim, and H. J. Lee, J. Phys. D: Appl. Phys. 44, 053001 (2011). https://doi.org/10.1088/0022-3727/44/5/053001
  2. B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D: Appl. Phys. 20, 1421 (1987). https://doi.org/10.1088/0022-3727/20/11/010
  3. J. G. Eden and S. J. Park, Plasma Phys. Control. Fusion 47, B83 (2005). https://doi.org/10.1088/0741-3335/47/12B/S07
  4. D. S. Lee, K. Tachibana, H. J. Yoon, and H. J. Lee, Jpn. J. Appl. Phys. 48, 056003 (2009). https://doi.org/10.1143/JJAP.48.056003
  5. J. Pons, E. Moreau, and G. Touchard, J. Phys. D: Appl. Phys. 38, 3635 (2005). https://doi.org/10.1088/0022-3727/38/19/012
  6. M. J. Pavlovich, H.-W. Chang, Y. Sakiyama, D. S. Clark, and D. B. Graves, J. Phys. D: Appl. Phys. 46, 145202 (2013). https://doi.org/10.1088/0022-3727/46/14/145202
  7. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulations (Adam Hilger, Bristol, 1991).
  8. J. P. Verboncoeur, Plasma Phys. Controlled Fusion 47, A231 (2005). https://doi.org/10.1088/0741-3335/47/5A/017
  9. V. Vahedi and M. Surendra, Comput. Phys. Commun. 87, 179 (1995). https://doi.org/10.1016/0010-4655(94)00171-W
  10. H. W. Bae, H.-J. Lee, and H. J. Lee, Appl. Sci. Converg. Technol. 25, 6 (2016).
  11. S. B. Shim, I. C. Song, H.-J. Lee, and H. J. Lee, J. Appl. Phys. 110, 023301 (2011). https://doi.org/10.1063/1.3606407
  12. J. Y. Lee, H. W. Bae, H. J. Lee, and J. P. Verboncoeur, Plasma Sources Sci. Technol. 23, 035017 (2014). https://doi.org/10.1088/0963-0252/23/3/035017