A Review of Anodic TiO2 Nanostructure Formation in High-temperature Phosphate-based Organic Electrolytes: Properties and Applications

고온 인산염 유기 전해질에서의 TiO2 나노구조 형성 원리와 응용

  • Oh, Hyunchul (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Lee, Young Sei (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
  • 오현철 (경남과학기술대학교 에너지공학과) ;
  • 이영세 (경북대학교 나노소재공학부) ;
  • 이기영 (경북대학교 나노소재공학부)
  • Received : 2017.06.08
  • Accepted : 2017.06.30
  • Published : 2017.08.10


In the present review, we provide an overview of the research trend of anodic $TiO_2$ nanostructures. To date, most anodic $TiO_2$ nanostructure formation has focused on the fluoride ion electrolyte system to form nanotube layers. Recently, a novel approach that describes the formation of thick, self-organized $TiO_2$ nanostructures was reported. These layers can be prepared on Ti metal by anodization in a hot organic/$K_2HPO_4$ electrolyte. This nanostructure consists of a strongly interlinked network of nanosized $TiO_2$, and thus provides a considerably higher specific surface area than that of using anodic $TiO_2$ nanotubes. This review describes the formation mechanism and novel properties of the new nanostructures, and introduces potential applications.


Supported by : National Research Foundation of Korea (NRF)


  1. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Titania nanotubes prepared by chemical processing, Adv. Mater., 11, 1307-1311 (1999).<1307::AID-ADMA1307>3.0.CO;2-H
  2. M. S. Sander, M. J. Côté, W. Gu, B. M. Kile, and C. P. Tripp, Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates, Adv. Mater., 16, 2052-2057 (2004).
  3. M. Assefpour-Dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces, J. Mater. Sci., 19, 3626-3639 (1984).
  4. X. Wang, Z. Li, J. Shi, and Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts, Chem. Rev., 114, 9346-9384 (2014).
  5. P. Roy, S. Bergr, and P. Schmuki, $TiO_2$ nanotubes: synthesis and applications, Angew. Chem. Int. Ed., 50, 2904-2939 (2011).
  6. K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114, 9385-9454 (2014).
  7. B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films, Nature, 353, 737-740 (1991).
  8. A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37-38 (1972).
  9. H. Tokudome and M. Miyauchi, Electrochromism of titanate-based nanotubes, Angew. Chem. Int. Ed., 44, 1974-1977 (2005)
  10. L. Kavan, Electrochemistry of titanium dioxide: some aspects and highlights, Chem. Rec., 12, 131-142 (2012).
  11. Y. Oshida, Bioscience and Bioengineering of Titanium Materials, 2nd ed., Elsevier, Oxford, UK (2013).
  12. A. Tricoli, M. Righettoni, and A. Teleki, Semiconductor gas sensors: dry synthesis and application, Angew. Chem., Int. Ed., 42, 7632-7659 (2010).
  13. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir, 14, 3160-3163 (1998).
  14. H. Shin, D.-K. Jeong, J. Lee, M. M. Sung, and J. Kim, Formation of $TiO_2$ and $ZrO_2$ nanotubes using atomic layer deposition with ultraprecise control of the wall thickness, Adv. Mater., 16, 1197-1200 (2004).
  15. X. Chen and S. S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 107, 2891-2959 (2007).
  16. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface, 27, 629-637 (1999).<629::AID-SIA551>3.0.CO;2-0
  17. R. Beranek, H. Hildebrand, and P. Schmuki, Self-organized porous titanium oxide prepared in $H_2SO_4/HF$ electrolytes, Electrochem. Solid State Lett., 6(3), B12-B14 (2003).
  18. S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of $TiO_2$ nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57-L60 (2011).
  19. D. Kowalski, D. Kim, and P. Schmuki, $TiO_2$ nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235-264 (2013).
  20. B. Melody, T. Kinard, and P. Lessner, The non-thickness limited growth of anodic oxide films on valve metals, Electrochem. Solid State Lett., 1, 126-129 (1998).
  21. J. T. Kinard, B. J. Melody, and P. M. Lessner, Electrolyte for anodizing valve metals, US Patent 5935408 A (1998).
  22. Q. Lu, G. Alcala, P. Skeldon, G. E. Thompson, M. J. Graham, D. Masheder, K. Shimizu, and H. Habazaki, Porous tantala and alumina films from non-thickness limited anodising in phosphate/glycerol electrolyte, Electrochim. Acta, 48, 37-42 (2002).
  23. S. Yang, Y. Aoki, and H. Habazaki, Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte, Appl. Surf. Sci., 257, 8190-8195 (2011).
  24. S. Yang, Y. Aoki, P. Skeldon, G. E. Thompson, and H. Habazaki. Growth of porous anodic alumina films in hot phosphate-glycerol electrolyte, J. Solid State Electrochem., 15, 689-696 (2011).
  25. D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, and P. Schmuki, Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells, Angew. Chem. Int. Ed., 48, 9326-9329 (2009).
  26. K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, and P. Schmuki, Anodic formation of thick anatase $TiO_2$ layers for high-efficiency, J. Am. Chem. Soc., 132, 1478-1479 (2010).
  27. K. Lee, D. Kim, and P. Schmuki, Highly self-ordered $TiO_2$ structures by in a hot glycerol electrolyte, Chem. Commun., 47, 5789-5791 (2011).
  28. K. Lee, D. Kim, S. Berger, R. Kirchgeorg, and P. Schmuki, Anodically formed transparent mesoporous $TiO_2$ electrodes for high contrast, J. Mater. Chem., 22, 9821-9825 (2012).
  29. K. Lee, Understanding the formation of anodic nanoporous $TiO_2$ structures in a hot glycerol/phosphate electrolyte, J. Electrochem. Soc., 164, E5-E10 (2017).
  30. K. Lee, D. Kim, S. Berger, R. Kirchgeorg, and P. Schmuki, Front side illuminated dye-sensitized solar cells using anodic $TiO_2$ mesoporous layers grown on FTO-glass, Electrochem. Commun., 22, 157-161 (2012).
  31. K. Lee, R, Kirchgeorg, and P. Schmuki, Role of transparent electrodes for high efficiency $TiO_2$ nanotube based dye-sensitized solar cells, J. Phys. Chem. C, 118, 16562-16566 (2014).
  32. A. Ghicov, S. P. Albu, R. Hahn, D. Kim, T. Stergiopoulos, J. Kunze, C.-A. Schiller, P. Falaras, and P. Schmuki, $TiO_2$ nanotubes in dye-sensitized solar cells: critical factors for the conversion efficiency, Chem. Asian J., 4, 520-525 (2009).
  33. A. Mills, R. H. Davies, and D. Worsley, Water purification by semiconductor photocatalysis, Chem. Soc, Rev., 22, 417-425 (1993).
  34. N. Ohtsu, N. Masahashi, Y. Mizukoshi, and K. Wagatsuma, Hydrocarbon decomposition on a hydrophilic $TiO_2$ surface by UV irradiation: Spectral and quantitative analysis using in-situ XPS technique, Langmuir, 25, 11586-11591 (2009).
  35. T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald, and J. T. Jr. Yates, Ultraviolet light-induced hydrophilicity effect on $TiO_2$ (110)($1{\times}1$) dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets, J. Phys. Chem. B, 109, 15454-15462 (2005).
  36. F. Kiriakidou, D. I. Kondarides, and X. E. Verikios, The effect of operational parameters and $TiO_2$-doping on the photocatalytic degradation of azo-dyes, Catal. Today, 54, 119-130 (1999).
  37. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, $TiO_2$-assisted photodegradation of dye pollutants: II. Adsorption and degradation kinetics of eosin in $TiO_2$ dispersions under visible light irradiation, Appl. Catal. B, 15, 147-156 (1998).
  38. R. Wang, N. Sakai, A. Fujishima, T. Watanabe, and K. J. Hashimoto, Studies of surface wettability conversion on $TiO_2$ single-crystal surfaces, J. Phys. Chem. B, 103, 2188-2194 (1999).
  39. W. West, First hundred years of spectral sensitization, Photogr. Sci. Eng., 18, 35-48 (1974).
  40. J. Moser, Notiz uber Verstärkung photoelektrischer Strome durch optische Sensibilisirung, Monatsh. Chem., 8, 373 (1887).
  41. J. Desilvestro, M. Gratzel, L. Kavan, J. Moser, and J. Augustynski, Highly efficient sensitization of titanium dioxide J. Am. Chem. Soc., 107, 2988-2990 (1985).
  42. N. Vlachopoulos, P. Liska, J. Augustynski, and M. Gratzel, Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films, J. Am. Chem. Soc., 110, 1216-1220 (1988).
  43. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gratzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers J. Am. Chem. Soc., 127, 16835-16847 (2005).
  44. Y. Tachibana, J. E. Moser, M. Grtzel, D. R. Klug, and J. R. Durrant, subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide Films, J. Phys. Chem., 100, 20056-20062 (1996).
  45. L. M. Peter, Characterization and modeling of dye-sensitized solar cells, J. Phys. Chem. C, 111, 6601-6612 (2007).
  46. M. Bailes, P. J. Cameron, K. Lobato, and L. M. Peter, Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells, J. Phys. Chem. B, 109, 15429-15435 (2005).
  47. P. J. Cameron and L. M. Peter, How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?, J. Phys. Chem. B, 109, 7392-7398 (2005).
  48. J. R. Jennings and L. M. Peter, A reappraisal of the electron diffusion length in solid-state dye-sensitized solar cells, J. Phys. Chem. C, 111, 16100-16104 (2007).
  49. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida, Spray deposition of electrospun $TiO_2$ nanorods for dye-sensitized solar cell, Nanotechnology, 18, 365709 (2007).
  50. S. Ito, N. C. Ha, G. Rothenberger, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin, and M. Gratzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-$TiO_2$ photoanode, Chem. Commun., 4004-4006 (2006).
  51. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin, and M. Gratzel, Application of highly ordered $TiO_2$ nanotube arays in flexible dye-sensitized solar cells, ACS Nano, 2, 1113-1116 (2008).
  52. D. Kim, P. Roy, K. Lee, and P. Schmuki, Dye-sensitized solar cells using anodic $TiO_2$: Improved efficiency by $TiCl_4$ treatment, Electrochem. Commun., 12, 574-578 (2010).