Research Trends in Photothermal Therapy Using Gold Nanoparticles

금 나노입자를 이용한 광열치료 연구 동향

  • Kim, Bong-Geun (Department of Chemical Engineering, Myongji University) ;
  • Yeo, Do Gyeong (Department of Chemical Engineering, Myongji University) ;
  • Na, Hyon Bin (Department of Chemical Engineering, Myongji University)
  • 김봉근 (명지대학교 화학공학과) ;
  • 여도경 (명지대학교 화학공학과) ;
  • 나현빈 (명지대학교 화학공학과)
  • Received : 2017.05.02
  • Accepted : 2017.07.05
  • Published : 2017.08.10


The photothermal therapy is a method of cell ablation using the heat converted from the incident light by photothermal transducers. It offers a selective treatment to desired abnormal cells, in particular, tumor tissues. Among various photothermal agents, gold nanoparticles (Au NPs) have received enormous attention due to their unique physicochemical property over last two decades. In this review, we address research strategies and methods to improve treatment efficacy by organizing recent research works. We mainly focus on research works to enhance light-to-heat conversion via optimizing the morphology of Au NPs and related assemblies as well as the strategies to deliver Au NPs efficiently to specific targets. We also introduce convergence research efforts to combine Au NP-mediated photothermal treatment and other functions such as diagnostic capabilities and other therapeutic methods.


Supported by : 명지대학교


  1. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. USA, 100, 13549-13554 (2003).
  2. D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Therapeutic possibilities of plasmonically heated gold nanoparticles, Trends Biotechnol., 24, 62-67 (2006).
  3. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett., 269, 57-66 (2008).
  4. J. S. Choi and S. Y. Kim, Synthesis and characterization of photosensitizer-conjugated gold nanorods for photodynamic/photothermal therapy, Appl. Chem. Eng., 27, 599-605 (2016).
  5. T. Sugiura, D. Matsuki, J. Okajima, A. Komiya, S. Mori, S. Maruyama, and, T. Kodama, Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling, Nano Res., 8, 3842-3852 (2015).
  6. G. v. Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res., 69, 3892-3900 (2009).
  7. B. Jang, Y. S. Kim, and Y. Choi, Effects of gold nanorod concentration on the depth-related temperature increase during hyperthermic ablation, Small, 7, 265-270 (2011).
  8. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles, Photochem. Photobiol., 82, 412-417 (2006).
  9. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res., 41, 1578-1586 (2008).
  10. S. Kommareddy, S. B. Tiwari, and M. M. Amiji, Long-circulating polymeric nanovectors for tumor-selective gene delivery, Technol. Cancer Res. Treat., 4, 615-625 (2005).
  11. W. Cai, T. Gao, H. Hong, and J. Sun, Applications of gold nanoparticles in cancer nanotechnology, Nanotechnol. Sci. Appl., 1, 17-32 (2008).
  12. S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, and W. C. W. Chan, Mediating tumor targeting efficiency of nanoparticles through design, Nano Lett., 9, 1909-1915 (2009).
  13. A. S. Thakor and S. S. Gambhir, Nanooncology: the future of cancer diagnosis and therapy, CA Cancer J. Clin., 63, 395-418 (2013).
  14. S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B, 103, 8410-8426 (1999).
  15. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence, J. Phys. Chem. A, 103, 1165-1170 (1999).
  16. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115-2120 (2006).
  17. C. Iancu, Photothermal therapy of human cancers (PTT) using gold nanoparticles, Biotechnol. Mol. Biol. Nanomed., 1, 53-60 (2013).
  18. A. J. Mieszawska, W. J. M. Mulder, Z. A. Fayad, and D. P. Cormode, Multifunctional gold nanoparticles for diagnosis and therapy of disease, Mol. Pharm., 10, 831-847 (2013).
  19. A. M. Alkilany and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, J. Nanopart. Res., 12, 2313-2333 (2010).
  20. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 23, 217-228 (2007).
  21. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, A new era for cancer treatment: gold nanoparticle-mediated thermal therapies, Small, 7, 169-183 (2011).
  22. R. Weissleder, A clearer vision for in vivo imaging, Nat. Biotechnol., 19, 316-317 (2001).
  23. A. C. Anselmo and S. Mitragotri, Nanoparticles in the clinic, Bioeng. Transl. Med., 1, 10-29 (2016).
  24. E. Buytaert, M. Dewaele, and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Bioeng. Transl. Med., 1776, 86-107 (2007).
  25. P. Mroz, A. Yaroslavsky, G. B. Kharkwal, and M. R. Hamblin, Cell death pathways in photodynamic therapy of cancer, Cancers, 3, 2516-2539 (2011).
  26. R. D. Bonfil, O. D. Bustuoabad, R. A. Ruggiero, R. P. Meiss, and C. D. Pasqualini, Tumor necrosis can facilitate the appearance of metastases, Clin. Exp. Metastasis, 6, 121-129 (1988).
  27. Y. Wu and B. P. Zhou, Inflammation: a driving force speeds cancer metastasis, Cell Cycle, 8, 3267-3273 (2009).
  28. K. F. Chu and D. E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy, Nat. Rev. Cancer., 14, 199-208 (2014).
  29. M. Zhang, H. S. Kim, T. Jin, and W. K. Moon, Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer, J. Photochem. Photobiol., B, 170, 58-64 (2017).
  30. M. Aioub and M. A. El-Sayed, A real-time surface enhanced raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles, J. Am. Chem. Soc., 138, 1258-1264 (2016).
  31. A. M. Gamal-Eldeen, D. Moustafa, S. M. El-Daly, E. A. El-Hussieny, S. Saleh, M. Khoobchandani, K. L. Bacon, S. Gupta, K. Katti, R. Shukla, and K. V. Katti, Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice, J. Photochem. Photobiol. B, 163, 47-56 (2016).
  32. M. R. K. Ali, Y. Wu, T. Han, X. Zang, H. Xiao, Y. Tang, R. Wu, F. M. Fernandez, and M. A. El-Sayed, Simultaneous time-dependent surface-enhanced Raman spectroscopy, metabolomics, and proteomics reveal cancer cell death mechanisms associated with gold nanorod photothermal therapy, J. Am. Chem. Soc., 138, 15434-15442 (2016).
  33. S. Parida, C. Maiti, Y. Rajesh, K. K. Dey, I. Pal, A. Parekh, R. Patra, D. Dhara, P. K. Dutta, and M. Mandal, Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy, Biochim. Biophys. Acta, 1861, 3039-3052 (2017).
  34. A. Murshid, J. Gong, M. A. Stevenson, and S. K. Calderwood, Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come, Expert Rev. Vaccines, 10, 1553-1568 (2011).
  35. M. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, Gold nanostructures: engineering their plasmonic properties for biomedical applications, Chem. Soc. Rev., 35, 1084-1094 (2006).
  36. X. Huang and M. A. El-Sayed, Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy, J. Adv. Res., 1, 13-28 (2010).
  37. S. Paterson, S. A. Thompson, J. Gracie, A. W. Wark, and R. de la Rica, Self-assembly of gold supraparticles with crystallographically aligned and strongly coupled nanoparticle building blocks for SERS and photothermal therapy, Chem. Sci., 7, 6232-6237 (2016).
  38. Y. Xia, X. Wu, J. Zhao, J. Zhao, Z. Li, W. Ren, Y. Tian, A. Li, Z. Shen, and A. Wu, Three dimensional plasmonic assemblies of AuNPs with an overall size of sub-200 nm for chemo-photothermal synergistic therapy of breast cancer, Nanoscale, 8, 18682-18692 (2016).
  39. C. Iodice, A. Cervadoro, A. Palange, J. Key, S. Aryal, M. R. Ramirez, C. Mattu, G. Ciardelli, B. E. O'Neill, and P. Decuzzi, Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs, Opt. Lasers Eng., 76, 74-81 (2016).
  40. X. Cheng, R. Sun, L. Yin, Z. Chai, H. Shi, and M. Gao, Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo, Adv. Mater., 29, 1604894 (2017).
  41. Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S. Y. Liu, M. Li, P. Kim, Z.-Y. Li, L. V. Wang, Y. Liu, and Y. Xia, Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, AS Nano, 7, 2068-2077 (2013).
  42., Pilot study of AuroLase (tm) therapy in refractory and/or recurrent tumors of the head and neck, U.S., National Institute of Health. 00848042 (2016).
  43. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine, J. Phys. Chem. B, 110, 7238-7248 (2006).
  44. N. R. Jana, Gram-Scale Synthesis of Soluble, Near-monodisperse gold nanorods and other anisotropic nanoparticles, Small, 1, 875-882 (2005).
  45. X. Huang, S. Neretina, and M. A. El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater., 21, 4880-4910 (2009).
  46. K. A. Kozek, K. M. Kozek, W. C. Wu, S. R. Mishra, and J. B. Tracy, Large-scale synthesis of gold nanorods through continuous secondary growth, Chem. Mater., 25, 4537-4544 (2013).
  47. S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protoc., 2, 2182-2190 (2007).
  48. Z. Li, H. Huang, S. Tang; Y. Li, X. F. Yu; H. Wang, P. Li, Z. Sun, H. Zhang, C. Liu, and P. K. Chu, Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy, Biomaterials, 74, 144-154 (2016).
  49. S. C. Gad, K. L. Sharp, C. Montgomery, J. D. Payne, and G. P. Goodrich, Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells), Int. J. Toxicol., 31, 584-594 (2012).
  50. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. Cancer Res. Treat., 3, 33-40 (2004).
  51. S. Kalele, S. W. Gosavi, J. Urban, and S. K. Kulkarni, Nanoshell particles: synthesis, properties and applications, Curr. Sci., 91, 1038-1052 (2006).
  52. M. R. Rasch, K. V. Sokolov, and B. A. Korgel, Limitations on the optical tunability of small diameter gold nanoshells, Langmuir, 25, 11777-11785 (2009).
  53. J. Zhang, J. Li, N. Kawazoe, and G. Chen, Composite scaffolds of gelatin and gold nanoparticles with tunable size and shape for photothermal cancer therapy, J. Mater. Chem. B, 5, 245-253 (2017).
  54. H. Yuan, C. G. Khoury, H. Hwang, C. M. Wilson, G. A. Grant, and T. Vo-Dinh, Gold nanostars: surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging, Nanotechnology, 23, 075102 (2012).
  55. B. Nikoobakht and M. A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater., 15, 1957-1962 (2003).
  56. M. R. K. Ali, I. M. Ibrahim, H. R. Ali, S. A. Selim, and M. A. El-Sayed, Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis, Int. J. Nanomed., 11, 4849-4863 (2016).
  57. Y. Liu, J. R. Ashton, E. J. Moding, H. Yuan, J. K. Register, A. M. Fales, J. Choi, M. J. Whitley, X. Zhao, Y. Qi, Y. Ma, G. Vaidyanathan, M. R. Zalutsky, D. G. Kirsch, C. T. Badea, and T. Vo-Dinh, A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy, Theranostics, 5, 946-960 (2015).
  58. P. Qiu, M. Yang, X. Qu, Y. Huai, Y. Zhu, and C. Mao, Tuning photothermal properties of gold nanodendrites for in vivo cancer therapy within a wide near infrared range by simply controlling their degree of branching, Biomaterials, 104, 138-144 (2016).
  59. B. Sun, J. Wu, S. Cui, H. Zhu, W. An, Q. Fu, C. Shao, A. Yao, B. Chen, and D. Shi, In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy, Nano Res., 10, 37-48 (2017).
  60. A. Hatef, S. Fortin-Deschenes, E. Boulais, F. Lesage, and M. Meunier, Photothermal response of hollow gold nanoshell to laser irradiation: continuous wave, short and ultrashort pulse, Int. J. Heat Mass Trans., 89, 866-871 (2015).
  61. L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells, Int. J. Heat Mass Trans., 54, 5459-5469 (2011).
  62. Y. Ren, H. Qi, Q. Chen, and L. Ruan, Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy, Int. J. Heat Mass Trans., 106, 212-221 (2017).
  63. M. Borzenkov, A. Maattanen, P. Ihalainen, M. Collini, E. Cabrini, G. Dacarro, P. Pallavicini, and G. Chirico, Fabrication of inkjet-printed gold nanostar patterns with photothermal properties on paper substrate, ACS Appl. Mater. Interfaces, 8, 9909-9916 (2016).
  64. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev., 60, 1307-1315 (2008).
  65. X. Huang, X. Peng, Y. Wang, Y. Wang, D. M. Shin, M. A. El-Sayed, and S. Nie, A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands, ACS Nano, 4, 5887-5896 (2010).
  66. L. Brannon-Peppas and J. O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev., 56, 1649-1659 (2004).
  67. R. Kunert and D. Reinhart, Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol., 100, 3451-3461 (2016).
  68. J. Sudimack and R. J. Lee, Targeted drug delivery via the folate receptor, Adv. Drug Deliv. Rev., 41, 147-162 (2000).
  69. W. Chen, S. G. Allen, A. K. Reka, W. Qian, S. Han, J. Zhao, L. Bao, V. G. Keshamouni, S. D. Merajver, and J. Fu, Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics, BMC Cancer, 16, 614 (2016).
  70. T. W. Huang, S. H. Tseng, C. C. Lin, C. H. Bai, C. S. Chen, C. S. Hung, C. H. Wu, and K. W. Tam, Effects of manual lymphatic drainage on breast cancer-related lymphedema: a systematic review and meta-analysis of randomized controlled trials, World J. Surg. Oncol., 11, 15 (2013).
  71. M. Neshatian, S. Chung, D. Yohan, C. Yang, and D. B. Chithrani, Determining the size dependence of colloidal gold nanoparticle uptake in a tumor-like interface (hypoxic), Colloids Interface Sci. Commun., 1, 57-61 (2014).
  72. M. Yang, Y. Liu, W. Hou, X. Zhi, C. Zhang, X. Jiang, F. Pan, Y. Yang, J. Ni, and D. Cui, Mitomycin C-treated human-induced pluripotent stem cells as a safe delivery system of gold nanorods for targeted photothermal therapy of gastric cancer, Nanoscale, 9, 334-340 (2017).
  73. S. Wang, Z. Teng, P. Huang, D. Liu, Y. Liu, Y. Tian, J. Sun, Y. Li, H. Ju, X. Chen, and G. Lu, Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars, Small, 11, 1801-1810 (2015).
  74. Y. Du, Q. Jiang, N. Beziere, L. Song, Q. Zhang, D. Peng, C. Chi, X. Yang, H. Guo, G. Diot, V. Ntziachristos, B. Ding, and J. Tian, DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy, Adv. Mater., 28, 10000-10007 (2016).
  75. S. Kang, S. H. Bhang, S. Hwang, J. K. Yoon, J. Song, H.-K. Jang, S. Kim, and B.-S. Kim, Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy, ACS Nano, 9, 9678-9690 (2015).
  76. Y. Liu, M. Yang, J. Zhang, X. Zhi, C. Li, C. Zhang, F. Pan, K. Wang, Y. Yang, J. Martinez de la Fuentea, and D. Cui, Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy, ACS Nano, 10, 2375-2385 (2016).
  77. N. Zhang, X. Xu, X. Zhang, D. Qu, L. Xue, R. Mo, and C. Zhang, Nanocomposite hydrogel incorporating gold nanorods and paclitaxel-loaded chitosan micelles for combination photothermal-chemotherapy, Int. J. Pharm., 497, 210-221 (2016).
  78. M. Singh, D. C. C. Harris-Birtill, Y. Zhou, M. E. Gallina, A. E. G. Cass, G. B. Hanna, and D. S. Elson, Application of gold nanorods for photothermal therapy in ex vivo human oesophagogastric adenocarcinoma, J. Biomed. Nanotechnol., 12, 481-490 (2016).
  79. S. I. Hussein, A. S. Sultan, and N. Y. Yaseen, Gold nanoparticles for photothermal therapy of cancerous cells in vitro, Int. J. Curr. Microbiol. Appl. Sci., 5, 261-266 (2016).
  80. X. Kang, X. Guo, X. Niu, W. An, S. Li, Z. Liu, Y. Yang, N. Wang, Q. Jiang, C. Yan, H. Wang, and Q. Zhag, Photothermal therapeutic application of gold nanorods-porphyrin-trastuzumab complexes in HER2-positive breast cancer, Sci. Rep., 7, 42069 (2017).
  81. M. Yu, F. Guo, J. Wang, F. Tan, and N. Li, Photosensitizer-loaded pH-responsive hollow gold nanospheres for single light-induced photothermal/photodynamic therapy, ACS Appl. Mater. Interfaces, 7, 17592-17597 (2015).
  82. E. L. L. Yeo, J. U. J. Cheah, D. J. H. Neo, W. I. Goh, P. Kanchanawong, K. C. Soo, P. S. P. Thong, and J. C. Y. Kah, Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy, J. Mater. Chem. B, 5, 254-268 (2017).
  83. M. Aioub, S. R. Panikkanvalappil, and M. A. El-Sayed, Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy, ACS Nano, 11, 579-586 (2017).
  84. Y. C. Ou, J. A. Webb, S. Faley, D. Shae, E. M. Talbert, S. Lin, C. C. Cutright, J. T. Wilson, L. M. Bellan, and R. Bardhan, Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer, ACS Omega, 1, 234-243 (2016).
  85. M. R. K. Ali, H. R. Ali, C. R. Rankin, M. A. El-Sayed, Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy, Biomaterials, 102, 1-8 (2016).
  86. B. K. Jung, Y. K. Lee, J. Hong, H. Ghandehari, and C. O. Yun, Mild hyperthermia Induced by gold nanorod-mediated plasmonic photothermal therapy enhances transduction and replication of oncolytic adenoviral gene delivery, ACS Nano, 10, 10533-10543 (2016).
  87. B. K. Wang, X. F. Yu, J. H. Wang, Z. B. Li, P. H. Li, H. Wang, L. Song, P. K. Chu, and C. Li, Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing, Biomaterials, 78, 27-39 (2016).
  88. F. Pene, E. Courtine, A. Cariou, and J. P. Mira, Toward theragnostics, Crit. Care Med., 37, S50-S58 (2009).
  89. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Anal. Chem., 77, 3261-3266 (2005).
  90. D. Radziuk and H. Moehwald, Highly effective hot spots for SERS signatures of live fibroblasts, Nanoscale, 6, 6115-6126 (2014).
  91. W. Li and X. Chen, Gold nanoparticles for photoacoustic imaging, Nanomedicine (Lond.), 10, 299-320 (2015).
  92. T. Wang, D. Halaney, D. Ho, M. D. Feldman, and T. E. Milner, Two-photon luminescence properties of gold nanorods, Biomed. Opt. Express, 4, 584-595 (2013).
  93. L. Y. Bai, X. Q. Yang, J. An, L. Zhang, K. Zhao, M. Y. Qin, B. Y. Fang, C. Li, Y. Xuan, X. S. Zhang, Y. D. Zhao, and Z. Y. Ma, Multifunctional magnetic-hollow gold nanospheres for bimodal cancer cell imaging and photothermal therapy, Nanotechnology, 26, 315701 (2015).
  94. M. Sun, F. Liu, Y. Zhu, W. Wang, J. Hu, J. Liu, Z. Dai, K. Wang, Y. Wei, J. Bai, and W. Gao, Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer, Nanoscale, 8, 4452-4457 (2016).
  95. O. Betzer, R. Ankri, M. Motiei, and R. Popovtzer, Theranostic approach for cancer treatment: multifunctional gold nanorods for optical imaging and photothermal therapy, J. Nanomater., 2015, 7 (2015).
  96. Y. Liu, M. Xu, Q. Chen, G. Guan, W. Hu, X. Zhao, X. Qiao, H. Hu, Y. Liang, H. Zhu, and D. Chen, Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser, Int. J. Nanomed., 10, 4747-4761 (2015).
  97. C. Du, A. Wang, J. Fei, J. Zhao, and J. Li, Polypyrrole-stabilized gold nanorods with enhanced photothermal effect towards two-photon photothermal therapy, J. Mater. Chem. B, 3, 4539-4545 (2015).
  98. M. Azhdarzadeh, F. Atyabi, A. A. Saei, B. S. Varnamkhasti, Y. Omidi, M. Fateh, M. Ghavami, S. Shanehsazzadeh, and R. Dinarvand, Theranostic MUC-1 aptamer targeted gold coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging and photothermal therapy of colon cancer, Colloids Surf., B, 143, 224-232 (2016).