Application of Various Hydrophobic Moiety-modified Chitosan Nanoparticle as a Drug Delivery Carrier

다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰

  • Jeong, Gyeong-Won (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Park, Jun-Kyu (CGbio Co. Ltd)
  • 정경원 (순천대학교 공과대학 고분자공학과) ;
  • 나재운 (순천대학교 공과대학 고분자공학과) ;
  • 박준규 ((주)시지바이오)
  • Received : 2017.05.08
  • Accepted : 2017.05.26
  • Published : 2017.08.10


Natural polymer chitosan has been widely applied to medical fields due to its biochemical activities such as anticancer, antibacterial and lowering cholesterol in addition to biocompatibility and biodegradability. Currently, researches are being actively conducted to develop various drug-encapsulated chitosan nanoparticles for curing different diseases by applying chitosan to a drug delivery system. The free amine ($-NH_2$) group present in chitosan can bind to various hydrophobic groups by physical and chemical modification and the chitosan with hydrophobic groups can form shell-core nanoparticles by self-assembly when dispersed in water. In addition, an insoluble drug can increase the solubility against water when it was encapsulated in the core of chitosan nanoparticles. Also, the therapy effect can be maximized by minimizing side effects of drugs such as proteins, anticancer drugs and vaccines when they were encapsulated in the core of chitosan nanoparticles. Moreover, it is possible to control the particle size and release rate according to the hydrophobic group introduced to chitosan, so that it can be applied to a wide range of medical fields. The purpose of this review is to discuss the preparation and property of chitosan nanoparticles modified with various hydrophobic groups, and the application to drug delivery systems according to their property.


Supported by : National Research Foundation of Korea (NRF), Ministry of Health & Welfare


  1. M. Jaiswal, R. Dudhe, and P. K. Sharma, Nanoemulsion: an advanced mode of drug delivery system, 3 Biotech, 5, 123-127 (2015).
  2. I. Khan, M. Khan, M. N. Umar, and D. H. Oh, Nanobiotechnology and its applications in drug delivery system: a review, IET Nanobiotechnol., 9, 396-400 (2015).
  3. R. Pandey and G. K. Khuller, Nanotechnology based drug delivery system(s) for the management of tuberculosis, Indian J. Exp. Biol., 44, 357-366 (2006).
  4. J. D. Kingsley, H. Dou, J. Morehead, B. Rabinow, H. E. Gendelman, and C. J. Destache, Nanotechnology: A focus on nanoparticles as a drug delivery system, J. Neuroimmune Pharmacol., 1, 340-350 (2006).
  5. B. Dineshkumar, K. Krishnakumar, A. R. Bhatt, D. Paul, J. Cherian, A. John, and S. Suresh, Single-walled and multi-walled carbon nanotubes based drug delivery system: Cancer therapy: A review, Indian J. Cancer, 52, 262-264 (2015).
  6. M. J. Tobin, G. Jenouri, I. Danta, C. Kim, H. Watson, and M. A. Sackner, Response to bronchodilator drug administration by a new reservoir aerosol delivery system and a review of other auxiliary delivery systems, Am. Rev. Respir. Dis., 126, 670-675 (1982).
  7. K. Hori, M. Suzuki, S. Tanda, S. Saito, and Q. Zhang, Functional-characterization of developing tumor vascular system and drug delivery (review), Int. J. Oncol., 2, 289-296 (1993).
  8. A. Semalty, M. Semalty, R. Singh, S. K. Saraf, and S. Saraf, Iontophoretic drug delivery system: A review, Technol. Health Care, 15, 237-245 (2007).
  9. C. Bharti, U. Nagaich, A. K. Pal, and N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: A review, Int. J. Pharm. Investig., 5, 124-133 (2015).
  10. B. Krishnamoorthy, V. Karanam, V. R. Chellan, K. Siram, T. S. Natarajan, and M. Gregory, Polymersomes as an effective drug delivery system for glioma-a review, J. Drug Target., 22, 469-477 (2014).
  11. Y. Hao, L. Wang, B. Zhang, D. Li, D. Meng, J. Shi, H. Zhang, Z. Zhang, and Y. Zhang, Manganese dioxide nanosheets-based redox/pH-responsive drug delivery system for cancer theranostic application, Int. J. Nanomed., 11, 1759-1778 (2016).
  12. A. Vyas, A. Kumar Sonker, and B. Gidwani, Carrier-based drug delivery system for treatment of acne, ScientificWorldJournal, 2014, 276260-276273 (2014).
  13. K. Songsurang, K. Siraleartmukul, and N. Muangsin, Mucoadhesive drug carrier based on functional-modified cellulose as poorly water- soluble drug delivery system, J. Microencapsul, 32, 450-459 (2015).
  14. X. L. Bi, X. Liu, Q. Zu, and L. Q. Di, Application of oral micro-carrier drug delivery system in studies on traditional Chinese medicine, Zhongguo Zhong Yao Za Zhi, 38, 3638-3644 (2013).
  15. M. P. Patel, R. R. Patel, and J. K. Patel, Chitosan mediated targeted drug delivery system: a review, J. Pharm. Pharm. Sci., 13, 536-557 (2010).
  16. K. Nagpal, S. K. Singh, and D. N. Mishra, Chitosan nanoparticles: a promising system in novel drug delivery, Chem. Pharm. Bull., 58, 1423-1430 (2010).
  17. L. Hu, X. Meng, R. Xing, S. Liu, X. Chen, Y. Qin, H. Yu, and P. Li, Design, synthesis and antimicrobial activity of 6-N-substituted chitosan derivatives, Bioorg. Med. Chem. Lett., 26, 4548-4551 (2016).
  18. J. Y. Je, Chitosan-phytochemical conjugates: Preparation, antioxidant, and NO inhibition in LPS-stimulated macrophages, J. Chitin Chitosan, 20, 245-250 (2015).
  19. A. Zimoch-Korzycka and L. Bobak, A. Jarmoluk, Antimicrobial and antioxidant activity of chitosan/hydroxypropyl methylcellulose film-forming hydrosols hydrolyzed by cellulase, Int. J. Mol. Sci., 17(9), 1436-1445 (2016).
  20. L. Fan, S. Zou, H. Ge, Y. Xiao, H. Wen, H. Feng, M. Liu, and M. Nie, Preparation and characterization of hydroxypropyl chitosan modified with collagen peptide, Int. J. Biol. Macromol., 93, 636-643 (2016).
  21. T. H. Kim, J. K. Park, C. Y. Choi, M. K. Jang, and J. W. Nah, Synthesis of low molecular water soluble chitosan conjugated biotin for utilizing target drug delivery system, J. Chitin Chitosan, 17, 37-42 (2012).
  22. G. W. Jeong, S. C. Park, C. Y. Choi, J. P. Nam, T. H. Kim, S. K. Choi, J. K. Park, and J. W. Nah, Anticancer effect of gene/peptide co-delivery system using transferrin-grafted LMWSC, Int. J. Pharm., 488, 165-173 (2015).
  23. C. Zhang, Y. Ding, Q. Ping, and L. L. Yu, Novel chitosan-derived nanomaterials and their micelle-forming properties, J. Agric. Food Chem., 54, 8409-8416 (2006).
  24. M. Huo, Y. Zhang, J. Zhou, A. Zou, D. Yu, Y. Wu, J. Li, and H. Li, Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug, Int. J. Pharm., 394, 162-173 (2010).
  25. T. Yan, D. Li, J. Li, F. Cheng, J. Cheng, Y. Huang, and J. He, Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(epsilon- caprolactone) copolymer micelle for combination cancer chemotherapy, Colloids Surf. B, 145, 526-538 (2016).
  26. C. Zhang, Y. Ding, L. L. Yu, and Q. Ping, Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives, Colloids Surf. B, 55, 192-199 (2007).
  27. H. R. Lin and P. C. Chang, Novel pluronic-chitosan micelle as an ocular delivery system, J. Biomed. Mater. Res. B, 101, 689-699 (2013).
  28. G. Qu, X. Zhu, C. Zhang, and Q. Ping, Modified chitosan derivative micelle system for natural anti-tumor product gambogic acid delivery, Drug Deliv., 16, 363-370 (2009).
  29. J. Singh and P. K. Dutta, Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications, Int. J. Biol. Macromol., 45, 384-392 (2009).
  30. M. Malekigorji, A. D. M. Curtis, and C. Hoskins, The use of iron oxide nanoparticles for pancreatic cancer therapy, J. Nanomed. Res., 1(1), 1-12 (2014).
  31. C. Liu, Y. Wu, L. Zhao, and X. Huang, Preparation of acetylsalicylic acid-acylated chitosan as a novel polymeric drug for drug controlled release, Int. J. Biol. Macromol., 78, 189-194 (2015).
  32. P. I. Siafaka, A. Titopoulou, E. N. Koukaras, M. Kostoglou, E. Koutris, E. Karavas, D. N. Bikiaris, Chitosan derivatives as effective nanocarriers for ocular release of timolol drug, Int. J. Pharm., 495, 249-264 (2015).
  33. V. M. Heinze and A. B. Actis, Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review, Int. J. Food Sci. Nutr., 63, 66-78 (2012).
  34. A. B. Thomson, Unidirectional flux rate of cholesterol and fatty acids into the intestine of rats with drug-induced diabetes mellitus: effect of variations in the effective resistance of the unstirred water layer and the bile acid micelle, J. Lipid Res., 21, 687-698 (1980).
  35. Y. T. Xie, Y. Z. Du, H. Yuan, and F. Q. Hu, Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system, Int. J. Nanomed., 7, 3235-3244 (2012).
  36. H. A. Tajmir-Riahi, S. Nafisi, S. Sanyakamdhorn, D. Agudelo, P. Chanphai, Applications of chitosan nanoparticles in drug delivery, Methods Mol. Biol., 1141, 165-184 (2014).
  37. L. Meng, W. Huang, D. Wang, X. Huang, X. Zhu, and D. Yan, Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery, Biomacromolecules, 14, 2601-2610 (2013).
  38. Z. Chen, L. Zhang, Y. Song, J. He, L. Wu, C. Zhao, Y. Xiao, W. Li, B. Cai, H. Cheng, and W. Li, Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery, Biomaterials, 52, 240-250 (2015).
  39. J. Y. Lee, C. Crake, B. Teo, D. Carugo, M. de Saint Victor, A. Seth, and E. Stride, Ultrasound-enhanced siRNA delivery using magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets, Adv. Healthc. Mater., 6, 1-9 (2017).
  40. M. Wu, K. Guo, H. Dong, R. Zeng, M. Tu, and J. Zhao, In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid-phosphorylcholine-chitosan conjugate, Mater. Sci. Eng. C, 45, 162-169 (2014).
  41. S. Y. Chae, S. Son, M. Lee, M. K. Jang, and J. W. Nah, Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier, J. Control. Release, 109, 330-344 (2005).
  42. H. Zhou, W. Yu, X. Guo, X. Liu, N. Li, Y. Zhang, and X. Ma, Synthesis and characterization of amphiphilic glycidol-chitosan-deoxycholic acid nanoparticles as a drug carrier for doxorubicin, Biomacromolecules, 11, 3480-3486 (2010).
  43. K. Kim, S. Kwon, J. H. Park, H. Chung, S. Y. Jeong, I. C. Kwon, and I. S. Kim, Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates, Biomacromolecules, 6, 1154-1158 (2005).
  44. Y. H. Kim, S. H. Gihm, C. R. Park, K. Y. Lee, T. W. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong, Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier, Bioconjug. Chem., 12, 932-938 (2001).
  45. V. A. Shchelkonogov, G. M. Sorokoumova, O. A. Baranova, A. V. Chekanov, A. V. Klochkova, K. D. Kazarinov, E. Y. Solovieva, A. I. Fedin, and V. I. Shvets, Liposomal form of lipoic acid: preparation and determination of antiplatelet and antioxidant activity, Biomed. Khim., 62, 577-583 (2016).
  46. F. A. Moura, K. Q. de Andrade, J. C. dos Santos, and M. O. Goulart, Lipoic acid: Its antioxidant and anti-inflammatory role and clinical applications, Curr. Top. Med. Chem., 15, 458-483 (2015).
  47. G. Liu, K. Li, and H. Wang, Polymeric micelles based on PEGylated chitosan-g-lipoic acid as carrier for efficient intracellular drug delivery, J. Biomater. Appl., 31, 1039-1048 (2017).
  48. S. D. Yang, W. J. Zhu, Q. L. Zhu, W. L. Chen, Z. X. Ren, F. Li, Z. Q. Yuan, J. Z. Li, Y. Liu, X. F. Zhou, C. Liu, and X. N. Zhang, Binary-copolymer system base on low-density lipoprotein-coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug, J. Biomed. Mater. Res. Part B Appl. Biomater., 105, 1114-1125 (2016).
  49. S. C. How, Y. F. Chen, P. L. Hsieh, S. S. Wang, and J. S. Jan, Cell-targeted, dual reduction- and pH-responsive saccharide/lipoic acid-modified poly(L-lysine) and poly(acrylic acid) polyionic complex nanogels for drug delivery, Colloids Surf. B, 153, 244-252 (2017).
  50. R. Wei, L. Cheng, M. Zheng, R. Cheng, F. Meng, C. Deng, and Z. Zhong, Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release, Biomacromolecules, 13, 2429-2438 (2012).
  51. O. E. Philippova, E. V. Volkov, N. L. Sitnikova, A. R. Khokhlov, J. Desbrieres, and M. Rinaudo, Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative, Biomacromolecules, 2, 483-490 (2001).
  52. L. Zhu, C. Tu, B. Zhu, Y. Su, Y. Pang, D. Yan, J. Wu, and X. Zhu, Construction and application of pH-triggered cleavable hyperbranched polyacylhydrazone for drug delivery, Polym. Chem., 2, 1761-1768 (2011).
  53. Y. Zhou, J. Yu, X. Feng, W. Li, Y. Wang, H. Jin, H. Huang, Y. Liud, and D. Fanac, Reduction-responsive core-crosslinked micelles based on a glycol chitosan-lipoic acid conjugate for triggered release of doxorubicin, RSC Adv., 6, 31391-31400 (2016).