Preparation and Characterization of Organic Solvent-resistant Polybenzimidazole Membranes

용매저항성 폴리벤즈이미다졸 분리막의 제조 및 특성평가

  • Jeong, Moon Ki (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 정문기 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2017.02.21
  • Accepted : 2017.04.07
  • Published : 2017.08.10


Recently, solvent-resistant nanofiltration membranes have been studied for the separation of solvents or solutes using a molecular weight cut-off system of the polymer which is resistant to a specific solvent. Required conditions for these membranes must have are excellent physical properties and solvent resistance. Polybenzimidazole, which is known to be one of the most heat-resistant commercially available polymers, has an excellent inherent solvent resistance and it is even insoluble in stronger organic solvents when cross-linked. Therefore, in this study, the applicability of polybenzimidazole as a solvent resistant nanofiltration membrane was discussed. The membrane was fabricated using the non-solvent induced phase separation method and showed a suitable morphology as a nanofiltration membrane confirmed by field emission scanning electron microscopy. In addition, the permeance of the solvent in the presence or absence of cross-linking was investigated and the stability was also confirmed through long operation. The permeance test was carried out with five different solvents: water, ethanol, benzene, N, N-dimethylacetamide (DMAc) and n-methyl-2-pyrrolidone (NMP); each of the initial flux was $6500L/m^2h$ (water, 2 bar), $720L/m^2h$ (DMAc, 5 bar), $185L/m^2h$ (benzene, 5 bar), $132L/m^2h$ (NMP, 5 bar), $65L/m^2h$ (ethanol, 5 bar) and the pressure between 2 and 5 bar was applied depending on the type of membrane.


Supported by : 산업통상자원부


  1. E. W. Neuse, Aromatic Polybenzimidazoles. Syntheses, Properties, and Applications, 1-42, Springer Berlin Heidelberg, Germany (1982).
  2. K. Hwang, J. Kim, S. Kim, and H. Byun, Preparation of polybenzimidazole- based membranes and their potential applications in the fuel cell system, Energies, 7, 1721-1732 (2014).
  3. H. M. S. Iqbal, Performance Evaluation of Polybenzimidazole for Potential Aerospace Applications, 3-10, TU Delft, Delft University of Technology, Netherlands (2014).
  4. S. H. Kim, J. M. Ko, W. G. Kim, and J. H. Chung, Studies on the synthesis of copolymer by using tetraaminobiphenyl and cardo molecule, Appl. Chem. Eng., 11, 170-175 (2000).
  5. D. J. Kim and S. Y. Nam, Development trend of membrane filter using ceramic fibers, Membr. J., 26, 87-96 (2016).
  6. S. H. Kook, S. J. Kim, J. W. Lee, M. H. Hwang, and I. S. Kim, Structure parameter change estimation of a forward osmosis membrane under pressurized conditions in pressure-assisted forward osmosis (PAFO), Membr. J., 26, 187-196 (2016).
  7. M. F. Flanagan and I. C. Escobar, Novel charged and hydrophilized polybenzimidazole (PBI) membranes for forward osmosis, J. Membr. Sci., 434, 85-92 (2013).
  8. J. G. Kim, S. H. Lee, C. H. Ryu, and G. J. Hwang, Preparation of cation exchange membrane using polybenzimidazole and its characteristic, Membr. J., 22, 265-271 (2012).
  9. A. Livingston, L. Peeva, and P. Silva, Organic solvent nanofiltration. In: S.P. Nunes and K.-V. Peinemann (eds.), Membrane Technology in the Chemical Industry, pp. 203-228, Wiley-VCH, Weinheim, Germany (2006).
  10. M. F. J. Solomon, Y. Bhole, and A. G. Livingston, High flux membranes for organic solvent nanofiltration (OSN) -Interfacial polymerization with solvent activation, J. Membr. Sci., 423, 371-382 (2012).
  11. I. B. Valtcheva, S. C. Kumbharkar, J. F. Kim, Y. Bhole, and A. G. Livingston, Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments, J. Membr. Sci., 457, 62-72 (2014).
  12. K. Vanherck, P. Vandezande, S. O. Aldea, and I. F. Vankelecom, Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents, J. Membr. Sci., 320, 468-476 (2008).
  13. H. N. Jang, S. J. Kim, Y. T. Lee, and K. H. Lee, Progress of nanofiltration hollow fiber membrane, Appl. Chem. Eng., 24, 456-470 (2013).
  14. D. Y. Oh and S. Y. Nam, Developmental trend of polyimide membranes for gas separation, Membr. J., 21, 307-320 (2011).
  15. M. Namvar-Mahboub and M. Pakizeh, Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified $SiO_2$ support for organic solvent nanofiltration, Sep. Purif. Technol., 119, 35-45 (2013).
  16. B. S. Cheon, S. I. Cheong, and J. W. Rhim, Pilot test with pervaporation separation of aqueous IPA using a composite PEI/PDMS membrane module, Membr. J., 25, 385-390 (2015).
  17. N. Ghaemi, S. S. Madaeni, and A. Alizadeh, Fabrication and modification of polysulfone nanofiltration membrane using organic acids: morphology, characterization and performance in removal of xenobiotics, Sep. Purif. Technol., 96, 214-228 (2012).
  18. S. M. Woo, Y. S. Chung, and S. Y. Nam, Evaluation of morphology and water flux for polysulfone flat sheet membrane with conditions of coagulation bath and dope solution, Membr. J., 22, 258-264 (2012).
  19. K. Hendrix, G. Koeckelberghs, and I. F. Vankelecom, Study of phase inversion parameters for PEEK-based nanofiltration membranes, J. Membr. Sci., 452, 241-251 (2014).
  20. M. Sairam, X. Loh, and Y. Bhole, Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN), J. Membr. Sci., 349, 123-129 (2010).
  21. J. H. Park, D. J. Kim, and S. Y. Nam, Characterization and preparation of PEG-Polyimide copolymer asymmetric flat sheet membrane for carbon dioxide separation, Membr. J., 25, 547-557 (2016).
  22. S. M. Woo, J. J. Choi, and S. Y. Nam, Preparation of hydroxy polyimide membranes for gas separation by phase inversion method, Membr. J., 22, 62-71 (2012).
  23. I. Valtcheva, S. Kumbharkar, J. Kim, L. Peeva, and A. Livingston, Development of organic solvent nanofiltration membranes for the application in extreme pH conditions, Procedia Eng., 44, 313-315 (2012).
  24. D. Chen, S. Yu, H. Zhang, and X. Li, Solvent resistant nanofiltration membrane based on polybenzimidazole, Sep. Purif. Technol., 142, 299-306 (2015).
  25. N. W. Kim, Preparation of asymmetric membrane by addition of nonsolvent, Membr. J., 25, 32-41 (2015).
  26. S. B. Yun and Y. T. Lee, Effect of addition of cosolvent $\gamma$-butyrolactone on morphology of polysulfone hollow fiber membranes, Appl. Chem. Eng., 25, 274-280 (2014).
  27. J. A. Joule and K. Mills, Heterocyclic Chemistry at a Glance, 461-483, John Wiley and Sons, Chichester, UK (2012).
  28. J. F. Kim, P. R. Gaffney, and I. B. Valtcheva, Organic solvent nanofiltration (OSN): A new technology platform for liquid-phase oligonucleotide synthesis (LPOS), Org. Process Res. Dev., 20, 1439-1452 (2016).
  29. T. G. Ahn, Miscibility and specific intermolecular interaction strength of PBI/PI blends depending on polyimide structure, Appl. Chem. Eng., 9, 185-192 (1998).
  30. B. Y. Lee, P. Dahal, H. S. Kim, S. Y. Yoo, and Y. C. Kim, A study on the molecular weight control and rheological properties of branched polycarbonate, Appl. Chem. Eng., 23, 388-393 (2012).
  31. J. H. Lee, J. H. Kim, and Y. T. Lee, Characteristics of permeation and fouling of UF/MF hollow fiber membranes for drinking water treatment, Membr. J., 10, 75-82 (2000).
  32. J. S. Wang, B. J. Kim, and S. H. Choi, Technical feasibility for hollow-fiber ultrafiltration water treatment system and its economic aspects, Appl. Chem. Eng., 10, 12-18 (1999).