DOI QR코드

DOI QR Code

Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Characterization of U-7Mo/Al-5Si Dispersion Fuels

  • Lee, Jeongmook (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Jai Il (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Youn, Young-Sang (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Ha, Yeong-Keong (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Jong-Yun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2016.06.08
  • Accepted : 2016.08.24
  • Published : 2017.06.25

Abstract

This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U-7Mo/Ale5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured $^{98}Mo/^{238}U$ ratios in fuel particles from spot analysis, and 3.4% RSD for $^{98}Mo/^{238}U$ ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U-7Mo fuel particles from the Al-5Si matrix. Each mass spectrum peak indicates the presence of U-7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for $^{98}Mo$ by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U-Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S.H. Lee, J.M. Park, C.K. Kim, Thermophysical properties of U-Mo/Al alloy dispersion fuel meats, Int. J. Thermophys. 28 (2007) 1578-1594. https://doi.org/10.1007/s10765-007-0212-0
  2. H.J. Ryu, Y.S. Kim, J.M. Park, H.T. Chae, C.K. Kim, Performance evaluation of U-Mo/Al dispersion fuel by considering a fuel-matrix interaction, Nucl. Eng. Technol. 40 (2008) 409-418. https://doi.org/10.5516/NET.2008.40.5.409
  3. Y.S. Kim, G.L. Hofman, Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix, J. Nucl. Mater. 425 (2012) 181-187. https://doi.org/10.1016/j.jnucmat.2011.07.032
  4. Y.S. Kim, B.J. Cho, D.S. Sohn, J.M. Park, Thermal conductivity modeling of U-Mo/Al dispersion fuel, J. Nucl. Mater. 466 (2015) 576-582. https://doi.org/10.1016/j.jnucmat.2015.08.051
  5. J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Development of very-high-density low-enriched-uranium fuels, Nucl. Eng. Des. 178 (1997) 119-126. https://doi.org/10.1016/S0029-5493(97)00217-3
  6. G.L. Hofman, Y.S. Kim, A classification of uniquely different types of nuclear fission gas behavior, Nucl. Eng. Technol. 37 (2005) 299-308.
  7. C.K. Kim, J.M. Park, H.J. Ryu, Use of a centrifugal atomization process in the development of research reactor fuel, Nucl. Eng. Technol. 39 (2007) 617-626. https://doi.org/10.5516/NET.2007.39.5.617
  8. C.K. Kim, K.H. Kim, I.H. Kuk, S.J.L. Kang, Preparation and characterization of uranium silicide dispersion nuclear fuel by centrifugal atomization, J. Korean Powder Metall. Inst. 1 (1994) 72-78.
  9. J.M. Park, K.H. Kim, C.K. Kim, M.K. Meyer, G.L. Hofman, R.V. Strain, The irradiation behavior of atomized U-Mo alloy fuels at high temperature, Met. Mater. Int. 7 (2001) 151-157. https://doi.org/10.1007/BF03026953
  10. H.J. Ryu, Y.S. Kim, Influence of fuelematrix interaction on the breakaway swelling of U-Mo dispersion fuel in Al, Nucl. Eng. Technol. 46 (2014) 159-168. https://doi.org/10.5516/NET.07.2014.705
  11. A.B. Robinson, G.S. Chang, D.D. Keiser Jr., D.M. Wachs, D.L. Porter, Irradiation Performance of U-Mo Alloy Based "Monolithic" Plate-Type Fuel-Design Selection, Idaho National Laboratory, 2009. INL/EXT-09-16807.
  12. S.F. Durrant, Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects, J. Anal. At. Spectrom. 14 (1999) 1385-1403. https://doi.org/10.1039/a901765h
  13. R. Russo, Laser ablation in analytical chemistry-a review, Talanta 57 (2002) 425-451. https://doi.org/10.1016/S0039-9140(02)00053-X
  14. D. Gunther, B. Hattendorf, Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry, TrAC Trends Anal. Chem. 24 (2005) 255-265. https://doi.org/10.1016/j.trac.2004.11.017
  15. J.S. Becker, Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides, Int. J. Mass Spectrom. 242 (2005) 183-195. https://doi.org/10.1016/j.ijms.2004.11.009
  16. M. Guillong, P. Heimgartner, Z. Kopajtic, D. Gunther, I. Gunther-Leopold, A laser ablation system for the analysis of radioactive samples using inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 22 (2007) 399-402. https://doi.org/10.1039/B616364E
  17. G.J. Havrilla, J. Gonzalez, Demonstration of Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Uranium Isotopic Measurements in U-10Mo Nuclear Fuel Foils, Los Alamos National Laboratory, 2015. LA-UR-15-24319.
  18. Y.K. Ha, S.H. Han, H.G. Kim, W.H. Kim, K.W. Jee, Shielded laser ablation ICP-MS system for the characterization of high burnup fuel, Nucl. Eng. Technol. 40 (2008) 311-318. https://doi.org/10.5516/NET.2008.40.4.311
  19. Y.K. Ha, J. Kim, Y.S. Jeon, S.H. Han, H.S. Seo, K. Song, Local burnup characteristics of PWR spent nuclear fuels discharged from YEONGGWANG-2 nuclear power plant, Nucl. Eng. Technol. 42 (2010) 79-88. https://doi.org/10.5516/NET.2010.42.1.079
  20. Y.K. Ha, J.G. Kim, Y.S. Park, S.D. Park, K. Song, Behaviors of molybdenum in $UO_2$ fuel matrix, Nucl. Eng. Technol. 43 (2011) 309-316. https://doi.org/10.5516/NET.2011.43.3.309
  21. D.S. Bexter, I. Rodushkin, E. Engstrom, Isotope abundance ratio measurements by inductively coupled plasma-sector field mass spectrometry, J. Anal. At. Spectrom. 27 (2012) 1355-1381. https://doi.org/10.1039/c2ja30153a