Current Optics and Photonics
- Volume 1 Issue 4
- /
- Pages.325-335
- /
- 2017
- /
- 2508-7266(pISSN)
- /
- 2508-7274(eISSN)
DOI QR Code
Joint Transmission Slot Assignment, FSO Links Allocation and Power Control for Hybrid RF/FSO Wireless Mesh Networks
- Zhao, Yan (College of Communication Engineering, Jilin University) ;
- Shi, Wenxiao (College of Communication Engineering, Jilin University) ;
- Shi, Hanyang (College of Communication Engineering, Jilin University) ;
- Liu, Wei (College of Communication Engineering, Jilin University) ;
- Wu, Pengxia (College of Communication Engineering, Jilin University)
- Received : 2017.01.25
- Accepted : 2017.06.20
- Published : 2017.08.25
Abstract
Hybrid radio frequency/free space optical (RF/FSO) wireless mesh networks have attracted increasing attention for they can overcome the limitations of RF and FSO communications and significantly increase the throughput of wireless mesh networks (WMNs). In this article, a resource assignment optimization scheme is proposed for hybrid RF/FSO wireless mesh networks. The optimization framework is proposed for the objective of maximizing throughput of overall hybrid networks through joint transmission slot assignment, FSO links allocation and power control with the consideration of the fading nature of RF and FSO links. The scheme is formulated as an instance of mixed integer linear program (MILP) and the optimal solutions are provided using CPLEX and Gurobi optimizers. How to choose the appropriate optimizer is discussed by comparing their performance. Numerous simulations are done to demonstrate that the performance of our optimization scheme is much better than the current case of having the same topology.
File
Acknowledgement
Supported by : National Natural Science Foundation of China
References
- J. Luo, C. Rosenberg, and A. Girard, "Engineering wireless mesh networks: joint scheduling, routing, power control, and rate adaptation," IEEE/ACM Trans. Netw. 18, 1387-1400 (2010). https://doi.org/10.1109/TNET.2010.2041788
- Y. Tang, M. B. Pearce, and S. G. Wilson, "Link adaptation for throughput optimization of parallel channels with application to hybrid FSO/RF systems," IEEE Trans. Commun. 60, 2723-2732 (2012). https://doi.org/10.1109/TCOMM.2012.061412.100460
- F. Yang, J. L. Cheng, and T. A. Tsiftsis, "Free-space optical communication with nonzero boresight pointing errors," IEEE Trans. Commun. 62, 713-725 (2014). https://doi.org/10.1109/TCOMM.2014.010914.130249
- Y. Tang and M. B. Pearce, "Link allocation, routing and scheduling for hybrid FSO/RF wireless mesh networks," J. Opt. Commun. Netw. 6, 86-95 (2014). https://doi.org/10.1364/JOCN.6.000086
- M. N. Smadi, S. C. Ghosh, A. A. Farid, T. D. Todd, and S. Hranilovic, "Free-space optical gateway placement in hybrid wireless mesh networks," J. Lightwave Technol. 27, 2688-2697 (2009). https://doi.org/10.1109/JLT.2009.2014910
- O. Awwad, A. A. Fuqaha, B. Khan, and G. B. Brahim, "Topology control schema for better QoS in hybrid RF/FSO mesh networks," IEEE Trans. Commun. 60, 1398-1406 (2012). https://doi.org/10.1109/TCOMM.2012.12.110069
- F. Ahdi and S. Subramaniam, "Optimal placement of FSO links in hybrid wireless optical networks," in IEEE Global Telecommun. Conf. (GLOBECOM) 263, 1-6 (2011).
- V. Rajakumar, M. N. Smadi, S. C. Ghosh, T. D. Todd, and S. Hranilovic, "Interference management in WLAN mesh networks using free-space optical links," J. Lightwave Technol. 26, 1735-1743 (2008).
- D. Wang and A. A. Abouzeid, "Throughput capacity of hybrid radio-frequency and Free-Space-Optical (RF/FSO) multi-hop networks," in Information Theory and Applications Workshop, 3-10 (2007).
- A. Kashyap and M. Shayman, "Routing and traffic engineering in hybrid RF/FSO networks," in IEEE Int. Conf. on Commun. (ICC) 5, 3427-3433 (2005).
- A. Kashyap, A. Rawat, and M. Shayman, "Integrated backup topology control and routing of obscured traffic in hybrid RF/FSO networks," in Proc. IEEE Global Telecommun. Conf. (GLOBECOM) 1-6 (2006).
- S. Enayati, H. Saeediand, and N. Mokari, "Throughput maximization in hybrid FSO/RF communication systems," in Int. Workshop on Opt. Wireless Commun. (IWOW) 51-54 (2015).
- D. Matic, "A mixed integer linear programming model and variable neighborhood search for maximally balanced connected partition problem," Appl. Math. Comput. 237, 85-97 (2014). https://doi.org/10.1016/j.amc.2014.03.098
- A. Sifaleras, L. Konstantaras, and N. Mladenovic, "Variable neighborhood search for the economic lot sizing problem with product returns and recovery," Int. J. prod. Econ. 160, 133-143 (2015). https://doi.org/10.1016/j.ijpe.2014.10.003
- C. Liu, Y. Yao, Y. X. Sun, and X. H. Zhao, "Analysis of average capacity for free-space optical links with pointing errors over gamma-gamma turbulence channels," Chinese Opt. Lett. 8, 537-540(2010). https://doi.org/10.3788/COL20100806.0537
- H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, "Average capacity of optical wireless communication systems over atmospheric turbulence channels," J. Lightwave Technol. 27, 974-979 (2009). https://doi.org/10.1109/JLT.2008.2005039
- Y. Wang, F. Du, J. Ma, and L. Y. Tan, "Employing circle polarization shift keying in free space optical communication with gamma-gamma atmospheric turbulence channel," Opt. Commun. 333, 167-174 (2014). https://doi.org/10.1016/j.optcom.2014.07.072
- M. A. A. Habash, L. C. Andrews, and R. L. Phillips, "Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media," Opt. Eng. 40, 1554-1562(2001). https://doi.org/10.1117/1.1386641
- T. Rakia, H. C. Yang, M. S. Alouini, and F. Gebali, "Outage analysis of practical FSO/RF hybrid system with adaptive combining," IEEE Commun. Lett. 19(8), 1366-1369 (2015). https://doi.org/10.1109/LCOMM.2015.2443771
- T. A. Tsiftsis, "Performance of heterodyne wireless optical communications systems over gamma-gamma atmospheric turbulence channels," Electron. Lett. 44, 373-375 (2008). https://doi.org/10.1049/el:20083028
- W. Gappmair, S. Hranilovic, and E. Leitgeb, "OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions," IEEE Commun. Lett. 15, 875-877 (2011). https://doi.org/10.1109/LCOMM.2011.062911.102083
- F. Yang and J. Cheng, "Coherent free-space optical communications in lognormal-Rician turbulence," IEEE Commun. Lett. 16, 1872-1875 (2012). https://doi.org/10.1109/LCOMM.2012.100812.121341
- H. Dahrouj, A. Douik, F. Rayal, T. Y. Al-Naffouri, and M. S. Alouini, "Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems," IEEE Wireless Commun. 22(5), 98-104 (2015). https://doi.org/10.1109/MWC.2015.7306543
- A. G. Sarigiannidis, M. Iloridou, P. Nicopolitidis, G. Papadimitriou, F.-N. Pavlidou, P. G. Sarigiannidis, M. D. Louta, and V. Vitsas, "Architectures and bandwidth allocation schemes for hybrid wireless-optical networks," IEEE Commun. Surveys Tuts. 17(1), 427-468 (2015). https://doi.org/10.1109/COMST.2014.2356640
- K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, "Impact of interference on multi-hop wireless network performance," Wireless Netw. 11, 471-487 (2005). https://doi.org/10.1007/s11276-005-1769-9