DOI QR코드

DOI QR Code

Phase Evolution and Electrical Properties of PZT Films by Aerosol-Deposition Method

에어로졸 증착법에 의해 제조된 PZT 막의 상변화와 전기적 특성

  • Park, Chun-Kil (Department of Materials Science and Engineering, Inha University) ;
  • Kang, Dong-Kyun (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Seung-Hee (Department of Materials Science and Engineering, Inha University) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan) ;
  • Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University)
  • 박춘길 (인하대학교 신소재공학과) ;
  • 강동균 (인하대학교 신소재공학과) ;
  • 이승희 (인하대학교 신소재공학과) ;
  • 공영민 (울산대학교 첨단소재공학과) ;
  • 정대용 (인하대학교 신소재공학과)
  • Received : 2017.07.25
  • Accepted : 2017.08.03
  • Published : 2017.09.01

Abstract

$Pb(Zr_{0.52}Ti_{0.48})O_3$ (PZT) films with a thickness of $5{\sim}10{\mu}m$ at the morphotropic phase boundary were fabricated by aerosol-deposition (AD), and their phase evolution and electrical properties were investigated. The microstructure of the AD PZT films revealed nanosized grains with a low crystallinity and a dense structure at room temperature. The AD PZT films showed a mixture of tetragonal and rhombohedral phases. The post-annealing temperature was varied to study the phase transition behavior. The crystallinity of the AD PZT films was enhanced by annealing at 450, 550, and $650^{\circ}C$ for 2 h. At $650^{\circ}C$, the tetragonal and rhombohedral phases reacted to form a bridge phase between the two phases. The polarization-electric field hysteresis loops of the AD PZT film annealed at $650^{\circ}C$ exhibited a smaller cohesive field and a lower slim hysteresis than the films annealed at 450 and $550^{\circ}C$.

Keywords

Piezoelectric;Aerosol-deposition;PZT

Acknowledgement

Supported by : 한국 국립 과학 재단, 한국 국립 연구 재단

References

  1. T. R. Shrout and S. J. Zhang, J. Electro., 19, 113 (2015). [DOI: http://dx.doi.org/10.1007/s10832-007-9047-0]
  2. C. A. Randall, N. C. Kim, J. P. Kucera, W. Cao, and T. R. Shrout, J. Am. Ceram. Soc., 81, 677 (1998). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1998.tb02389.x]
  3. J. Akedo and M. Lebedev, Jpn. J. Appl. Phys., 38, 5397 (2006). [DOI: https://doi.org/10.1143/jjap.38.5397]
  4. M. Nakada, K. Ohashi, and J. Akedo, Jpn, Appl. Phys., 44, 1088 (2005). [DOI: https://doi.org/10.1143/jjap.44.l1088] https://doi.org/10.1143/JJAP.44.L1088
  5. J. Akedo, M. Lebedev, A. Iwata, H. Ogiso, and S. Nakano, Mater. Res. Soc. Symp. Proc., 778, 289 (2003).
  6. J. H. Lim, J. H. Kim, and S. H. Cho, J. Korea. Ceram. Soc., 31, 581 (1994).
  7. J. J. Choi. J. H. Jang, B. D. Hahn, D. S. Park, W. H. Yoon, J. Ryu, and C. Park, J. Am. Ceram. Soc., 90, 3389 (2007). [DOI: https://doi.org/10.1111/j.1551-2916.2007.01901.x] https://doi.org/10.1111/j.1551-2916.2007.01901.x
  8. G. Han, J. H. Ryu, W. H. Yoon, J. J. Choi, B. D. Hahn, and D. S. Park, J. Am, Ceram. Soc., 94, 1509 (2011). [DOI: https://doi.org/10.1111/j.1551-2916.2010.04276.x] https://doi.org/10.1111/j.1551-2916.2010.04276.x
  9. J. H. Ryu, J. J. Choi, B. D. Hahn, D. S. Park, W. H. Yoon, and K. H. Kim, Appl. Phys. Lett., 90, 152901 (2007). [DOI: https://doi.org/10.1063/1.2720751] https://doi.org/10.1063/1.2720751
  10. E. C. Lima and E. B. Araujo, Adv. Mater. Phys. Chem., 2, 178 (2012). [DOI: https://doi.org/10.4236/ampc.2012.23027] https://doi.org/10.4236/ampc.2012.23027
  11. F. Ni, L. Luo, X. Pan, W. Li, and J. Q. Zhu, J. Alloys Compd., 541, 150 (2012). [DOI: https://doi.org/10.1016/j.jallcom.2012.06.129] https://doi.org/10.1016/j.jallcom.2012.06.129
  12. B. Tiwari and R.N.P. Choudhary, IEEE Trans. Dielectr. Electr. Insul., 22, 3046 (2015). [DOI: https://doi.org/10.1109/tdei.2015.004300] https://doi.org/10.1109/TDEI.2015.004300
  13. M. D. Durruthy-Rodriguez and J. M. Yanez-Limon, Ferroelectr.: Phys. Eff., 654, (2011). [DOI: https://doi.org/10.5772/21678]
  14. J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006). [DOI: https://doi.org/10.1111/j.1551-2916.2006.01030.x] https://doi.org/10.1111/j.1551-2916.2006.01030.x
  15. H. Ogawa, Mater. Trans., 47, 1945 (2006). [DOI: https://doi.org/10.2320/matertrans.47.1945] https://doi.org/10.2320/matertrans.47.1945
  16. J. J. Choi, D. S. Park, B. G. Seong, and H. Y. Bae, Int. J. Hydrogen Energy, 37, 9809 (2012). [DOI: https://doi.org/10.1016/j.ijhydene.2012.03.148] https://doi.org/10.1016/j.ijhydene.2012.03.148
  17. J. J. Choi, B. D. Hahn, J. Ryu, W. H. Yoon, and D. S. Park, J. Appl. Phys., 102, 044101 (2007). [DOI: https://doi.org/10.1063/1.2769342] https://doi.org/10.1063/1.2769342
  18. J. J. Choi, J. H. Ryu, B. D. Hahn, W. H. Yoon, B. K. Lee, J. H. Choi, and D. S. Park, J. Alloys Compd., 492, 488 (2010). [DOI: https://doi.org/10.1016/j.jallcom.2009.11.146] https://doi.org/10.1016/j.jallcom.2009.11.146
  19. Z. Necira, A. Boutarfaia, M. Abba, and N. Abdessalem, EPJ Web of Conferences, 29, 00038 (2012). [DOI: https://doi.org/10.1051/epjconf/20122900038]