DOI QR코드

DOI QR Code

Effect of Decay Rate Coefficients with Sulfur Denitrification due to Salt in Seafood Wastewater

수산물 가공폐수내 염분이 황 탈질 반응속도 상수에 미치는 영향

  • Jo, You-Na (Dept. of Earth and Environmental Engineering, Kangwon National University) ;
  • Choi, Yong-Bum (Dept. of Earth and Environmental Engineering, Kangwon National University) ;
  • Han, Dong-Joon (Dept. of Fire.Environmental Disaster, Gangwon State University) ;
  • Kwon, Jae-Hyouk (Dept. of Earth and Environmental Engineering, Kangwon National University)
  • 조유나 (강원대학교 지구환경시스템공학과) ;
  • 최용범 (강원대학교 지구환경시스템공학과) ;
  • 한동준 (강원도립대학교 소방환경방재과) ;
  • 권재혁 (강원대학교 지구환경시스템공학과)
  • Received : 2017.07.25
  • Accepted : 2017.08.17
  • Published : 2017.08.31

Abstract

This study examined the effects of the salinity of seafood wastewater on the sulfur denitrification process. An examination of the denitrification efficiency showed that the optimal EBCT was 1hr at an influent T-N concentration of 20mg/L or lower and 2-3hr at an T-N concentration of 30mg/L. An examination of the denitrification efficiency according to the nitrogen load showed that the legal effluent water quality criterion was satisfied when the influent load was maintained within $0.496kg/m^3/day$. On the other hand, the reactor volume increased when this was applied to the site. Therefore, the influent load should be within $0.372kg/m^3/day$ considering the denitrification and economic efficiency. At a load of $0.248{\sim}0.628kg/m^3{\cdot}day$, the k value was $0.0890{\sim}0.5032hr^{-1}$. The batch experimental results according to the $Cl^-$ concentration showed that at an influent nitrogen concentration of 30.0mg/L, the effect of the denitrification efficiency was not large below the salinity of $7,000mgCl^-/L$, but inhibition occurred above $9,000mgCl^-/L$. Calculations of the reaction rate constant according to the $Cl^-$ concentration showed that the reaction rate constant was $0.1049{\sim}0.2324hr^{-1}$ at a raw wastewater concentration of ${\sim}5,000mgCl^-/L$. In contrast, the k value was $0.1588hr^{-1}$ at $7,000mgCl^-/L$ and $0.1049hr^{-1}$ at $9,000mgCl^-/L$.

본 연구는 수산물가공폐수 내 포함된 염분이 황 탈질조에 미치는 영향을 파악하고자 수행되었다. 황 탈질조의 탈질효율 검토결과, 유입 T-N 농도 20mg/L 이하에서는 EBCT 1hr, 30mg/L에서는 EBCT 2~3hr가 최적 EBCT로 조사되었다. 또한 그 이상의 T-N이 유입될 경우 생물학적 처리공정으로 반송을 통하여, 유입 T-N 농도를 30mg/L 이하로 유지해야 한다. 질소 부하에 따른 탈질효율 검토결과, 유입부하를 $0.496kg/m^3{\cdot}day $ 이내로 유지하였을 때 방류수질 기준을 만족하였지만, 현장 적용시 반응조 용적이 증가되는 문제점이 발생하기 때문에 탈질효율과 경제성을 고려하였을 때 유입부하를 $0.372kg/m^3{\cdot}day$이내로 운전해야 한다. 황 탈질 반응속도 상수를 산정한 결과, 유입부하 $0.248{\sim}0.628kg/m^3{\cdot}day$에서 k은 $0.0890{\sim}0.5032hr^{-1}$로 유기물 생분해도의 반응속도 상수보다 높게 조사되었다. $Cl^-$ 농도에 따른 회분식 실험 결과, 유입 질소농도 30.0mg/L 에서 염분농도 $7,000mgCl^-/L$ 이하에서는 탈질효율의 영향은 크지 않으나, $9,000mgCl^-/L$ 이상에서는 저해가 발생하는 것으로 조사되었다. 연속식 반응실험에서 $Cl^-$농도에 따른 반응속도 상수 산정결과, raw wastewater${\sim}5,000mgCl^-/L$에서의 반응속도 상수는 $0.1049{\sim}0.2324hr^{-1}$로 조사되었다. 그러나 $7,000mgCl^-/L$의 경우 k은 $0.1588hr^{-1}$로, $9,000mgCl^-/L$는 k은 $0.1049hr^{-1}$로 염분 농도가 증가할수록 반응속도 상수는 감소되었다.

Keywords

Acknowledgement

Supported by : 강원대학교

References

  1. Choi. Y. B, Kwon. J. H, Rim. J. M, "Effect of the Salt Concentration in Seafood Processing Wastewater on the Anaerobic Ultimate Biodegradability and Multiple Decay Rate of Organic Matter", Journal of KSEE, vol. 32, no. 11, pp. 1038-1045, 2010.
  2. Choi. Y. B, Lee. H. S, Han. D. J, Kwon. J. H, "A Study on Management of Seafood Wastewater Treatment Facility using Submerged MBR", J. Kor. Academia-Industrial cooperation Society, vol. 16, no. 11, pp. 7227-7236, 2015. DOI: https://doi.org/10.5762/KAIS.2015.16.11.7227
  3. Cho. I. H, Kim. J. T, "Trends in the Technology and Market of Membrane Bioreactors(MBR) for Wastewater Treatment and Reuse and Development Directions", The Membrane Society of Korea, vol.23, no.1 pp. 24-44, 2013.
  4. K. Sutherland, "The rise of membrane bioreactors", Filtration & Separation, vol.47, no.5 pp.14-16, 2010. DOI: http://dx.doi.org/10.1016/S0015-1882(10)70208-1
  5. Kim. Y. H, Chae. K. J, Yim. C. S, Lee. Y. M, Bae. W. K, "Evaluation of Design and Operation Parameters for a Spherical Sulfur Denitrification Reactor Treating High Strength Municipal Wastewater", J. KSEE, vol. 32, no. 12, pp. 1087-1093, 2010.
  6. Yoo. S. J, Shin. S. H, Lee. Y. S, "A Study on the Removal of Nitrogen for Recycle Water by Sulfur Denitrification", Jounal of Korean Society of Urban Environment, vol. 12, no. 2, pp. 139-145, 2012.
  7. Choi. Y. B, "Effects of Salt on the Biological Treatment of Seafood Wastewater", Ph.D. Thesis, Department of Environmental Engineering, Kangwon National University of Korea. 2011.
  8. Jo. Y. N, "Effects of Salt on the sulfur denitrification process", Master"s Thesis, Kangwon National University of Korea. 2017.
  9. Metcalf & Eddy, "Wastewater Engineering: Treatment and Resource Recovery", pp. 30-42, Mc Graw Hill, 2016.
  10. Shin. B. S, "A Study on Nitrate Removal from Municipal Sewage Using Sulfur-Utilizing Autotrophic Denitrification", Master"s Thesis, InHa University of Korea. 2002.
  11. Kim. B. Y, "Development of Livestock Waste Treatment & Resource Recovery system", Ph.D. Thesis, Department of Environmental Engineering, Kangwon National University of Korea. 2001.
  12. Kang. H, Shin. K. S, Richards. B, "Determination of Ultimate Biodegradability and Multiple Decay Rate Coefficients in Anaerobic Batch Degradation of Organic Wastes", J. KSEE, vol. 27, no. 5, pp. 555-601, 2005.
  13. Moon. B. H, Yoon. C. H, Seo. G. T, Kim. S. S, "Effects of C/N Ratio and alt Concentration on Pollutant Removal in SBR", J. KSEE, vol. 24, no. 2, pp. 251-260, 2002.
  14. Lee, Y. H, Yoo. S. J, Oh. D. M, Lee. Y. S, "A Study on th Removal of Nitrogen and Phosphorus by Addition of coagulant in the Sulfur Denitrification Process Coupled to he Membrane Bioreactor" J. KSEE, vol. 32, no. 10, pp. 949-956, 2010.