Trend on Development of Low Molecular Weight Organosilicone Surfactants (Part II)

저분자 유기실리콘 계면활성제의 개발 동향 (제2보)

  • Rang, Moon Jeong (Department of Pharmaceutical Engineering, Pai Chai University)
  • 랑문정 (배재대학교 제약공학과)
  • Received : 2017.07.20
  • Accepted : 2017.08.23
  • Published : 2017.09.30


Organosilicone-based surfactants, consisting of hydrophobic organosilicone groups coupled to hydrophilic polar groups, have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability, resulted from the unique properties of organosilicone. Especially, organosiloxane surfactants, having low molecular weight siloxane as hydrophobe, exhibit low surface tension and excellent wettability and spreadability, leading to their applications as super wetter/super spreader, but have the disadvantage of vulnerability to hydrolysis. A variety of low molecular weight siloxane surfactant structures are required to provide the functional improvement and the defect resolution for reflecting the necessities in the various applications. This review includes the synthetic schemes of reactive tetrasiloxanes and disiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive tetrasiloxanes or disiloxanes to hydrophilic groups, and the main synthetic schemes of the tetra- and di-siloxane surfactants having polyether-, carbohydrate-, gemini-, bola-type surfactant structures.


  1. T. F. Tadros, Applied Surfactants Principles and Applications, Wiley-VCH (2005).
  2. M. J. Rang, Trend on Development and Application of Polymeric Surfactants , J. of Korean Oil Chemists' Soc, 30(3), 546-567 (2015).
  3. A. J. O'Lenick Jr., Silicone Emulsions and Surfactants, J. Surfact. Deterg., 3(3), 387-393(2000).
  4. M. J. Rang, Trend on Development of Low Molecular Weight Organosilicone Surfactants (Part 1), J. of Korean Oil Chemists' Soc, 34(1), 66-82 (2017).
  5. R. M. Hill, Siloxane Surfactants, in Specialty Surfactants, I.D. Robb (ed.). p.143-168, Blackie Academic & Professional (1997).
  6. JOCS, Silicone Surfactant, in Interfaces and Surfactants : Fundamentals and Applications, p.60-68 (2009).
  7. R. M. Hill, Silicone Surfactants - New Developments, Current Opinions in Colloids & Interface Science, 7, 255-261 (2007).
  8. R. M. Hill, Silicone Surfactants, in Chemistry and Technology of Surfactants, R. Farn(ed.), p.186-203, Blackwell (2006).
  9. R. M. Hill, Siloaxne Surfactants, in Silicone Surfactants, R. M. Hill(ed.), p.1-47, CRC Press (1999).
  10. D. W. Kang and Y. M. Kim, Polyorganosiloxane Modified Polymer, Prospectives of Industrial Chemistry, 2(4), 3-9 (1999).
  11. Z. Peng, Q. Wu, T Cai, H. Gao, K. Chen, Syntheses and Properties of Hydrolysis Resistant Twin-Tail Trisiloxane Surfactants, Colloids and Surfaces A, 342, 127-131 (2009)
  12. R.Luo, P. Liu and Y. Chen, Synthesis and Properties of a Hydrolysis Resistant Cationic Trisiloxane Surfactants. J. Surfact. Deterg., 16, 33-38(2013).
  13. Z. Peng, C. Lu and M. Xu, Influence of Substructures on the Spreading Ability and Hydrolysis Resistance of Double-tail Trisiloxane Surfactants. J. Surfact. Deterg., 13, 75-81 (2010).
  14. R. M. Hill, Superspreading, Current Opinions in Colloids & Interface Science, 3, 247-254 (1998).
  15. M. He, R.M. Hill, H.A. Doumaux, F.S. Bates, H.T. Davis, D.F. Evans and L.E. Scriven, Microstructure and Rheology of Nonionic Trisiloxane Surfactant Solutions, in Structure and Flow in Surfactant Solutions, C.A. Herb and R. K. Prud'homme (ed.), American Chemical Society (1994).
  16. D. W. Chung, Study on the Synthesis of Low Molecular Weight Silicones Modified with Polyethers, J. Korean Ind. Eng. Chem., 19(3), 332-337 (2008).
  17. J. H. Fuhrhop, T.Y. Wang, Bolaamphiphiles, Chem. Rev., 104, 2901-2938 (2004).
  18. L. Lewis, From Sand to Silicones : An Overview of the Chemistry of Silicones, in Silicones and Silicones-Modified Materials, S. J. Clarson et al.(Ed), p.11-19, American Chemical Society (2000).
  19. D. Zhang, C. Wang and G. Wang, Synthesis and Properties of a New Tetrasiloxane-tailed Dicephalic Surfactant, Tenside Surf. Det., 49(2), 151-155 (2012).
  20. W. Wang, S. Wang, Z. Du, G. Wang and L. Wang, Properties and Glucosamide-Based Tetrasiloxane Surfactants, J. Disp. Sci. Tech., 33, 654-659 (2012).
  21. G. Wang, W. Qu, Z. Du, Q. Cao and Q. Li, Adsorption and Aggregation Behavior of Tetrasiloxane-Tailed Surfactants Containing Oligo(ethylene oxide) Methyl Ether and a Sugar Moiety, J. Phys. Chem. B, 115, 3811-3813 (2011).
  22. B. Yang, Q. Wang, Q. Fan, H. ing, H. Zhou. A. T. Gao and J. X. Xiao, Study of Surface Activity and Wetting Performance of Ally Polyether Modified Tetrasiloxane Surfactants, Chin. Surf. Dert. Cosm., 43(1) 26-42 (2013).
  23. N. Rossi, Z. C. Zhang, Y. Schneider, K. Morcom, L. Lyona, Q. Wang, K. Amine and R. West, Synthesis and Characterization of Tetra- and Trisiloxane-Containing Oligo(ethylene glycol)s- Highly Conducting Electrolytes for Lithium Batteries, Chem. Meter., 18(5), 1289-1295 (2006).
  24. L.S. Bonnington, W. Henferson and J.A. Zabkiewicz, Characterization of Synthetic and Commercial Trisiloxane Surfactants Materials, Appl. Organomet, Chem. 18, 28-38 (2004).
  25. T. Stoebe, Z. Lin, R. M. Hill, M. D. Ward and H. T. Davis, Surfactant- Enhanced Spreading, Langmuir, 12, 337-344 (1996).
  26. C. S Kweon, D. W. Kim, H. K. Cho and S. T. Noh, Synthesis and Physical Properties of Oligo-(propylene oxideblock-ethylene oxide) Ally Methyl Ether, J. Ind. Eng. Chem., 9(2), 146-152 (2003).
  27. C. H. Lim, D. W. Kim, and S. T. Noh, Thermal and Physical Properties of Oligo-(propylene oxide-block-ethylene oxide) Ally Methyl Ether Containing Tetrasiloxane as Wetting Agent, J. Ind. Eng. Chem., 9(5), 526-536 (2003).
  28. D. W. Kim, C. H. Lim, J. K. Choi, and S. T. Noh, Surface Active Properties and LCST Behavior of Oligo-(propylene oxide -block-ethylene oxide) Ally Ether Siloxane Surfactants in Aqueous Solution, Bull. Korean. Chem. Soc., 25(8), 1182-1188 (2004).
  29. G. Zhang, F. Han and G. Zhang, Synthesis and Interfacial Properties of a New Family of Trisiloxanes, Acta Chimica Sinica, 64(11), 1205-1208 (2006).
  30. F. Han, Y. Y. Deng, Y. W. Zhou and B. C. Xu, Carbohydrate-Modified Silicone Surfactant, J. Surfac. Deterg., 15, 123-129 (2012).
  31. W. Guoyong, D. Zhiping, L. Qiuxiao, Z. Wei, Carbohydrate-Modified Siloxane Surfactants and Their Adsorption and Aggregation Behavior in Aqueous Solution, J. Phys. Chem., 114, 6872-6877 (2010).
  32. D. Zhang Y. Qiao, Synthesis and Properties of New Dicephalic Tetrasiloxane Surfactants Containing Sugar, Res. Chem. Intermed, 41, 3047-3056 (2015).
  33. X. Zeng, J. Xu, R. Fu, Q. Wang and L. Wang, Synthesis and Properties of New Tricephalic Tetrasiloxane Surfactants Containing Carbohydrate and Hydrocarbon Chain, J. Disp. Sci. Tech., 37, 846-852 (2016).
  34. W. Guoyong, Q. Wenshan, D. Zhiping, W. Wanxu and Q. Li, Adsorption and Aggregation Behaviors of Tetrasiloxane-Tailed Gemini Surfactants with (EO)m Spacers, J. Phys. Chem. B, 117, 3154-3160 (2013).
  35. W. Qu and D. Zhang, Dynamic Surface Tension of Tetrasiloxane-Tailed Gemini Surfactants Containing Glucosamide, Phosphorus, Sulfur, and Silicon, 190, 503-508 (2015).
  36. T. Lei, W. Qu and G. Wang, Wetting Behavior of Tetrasiloxane Surfactants Containing Glucosamide on Low-Energy Surface, J. Disp. Sci. Tech., 36, 1216-1220 (2015).
  37. F. Han and G. Zhang, New Family of Gemini Surfactants with Glucosamide-Based Trisiloxane, Colloids and Surfaces A. 237, 79-85 (2004).
  38. X. Zhao, W. Laing, D. An and Z. Ye, Synthesis and Properties of Tetrasiloxane Gemini Imidazolium Surfactants, Colloid Polym. Sci., 294, 491-500 (2016).
  39. P. Li, X. Yang, C. Guo, G. Wang and W. Zhang, Tetrasiloxane Room Teperature Ionic Liquids : Adsorption and Aggregation Properties in Aqueous Solution, Colloid Polym. Sci., 293, 2625-2634 (2015).
  40. Z. Zhang, Dong, R. West and Khalil Amine, Oligo(ethylene glycol)- Functionalized Disiloxane as Electrolytes for Lithium Batteries, J. Power Sources, 195, 6062-6068 (2010).
  41. US Patent Application US 50265990 A1, Disiloxane Compounds and Their Uses, (2013).
  42. China Patent Application CN 104755486 A, Disiloxane Compounds and Their Uses, (2013).
  43. US Patent US 7399350 B2, Fluorine-free Disiloxane Surfactants Compositions for Use in Coatings and Printing Compositions (2008).
  44. G. E. Legrow and L. J. Petroff, Silicone Polyether Copolymers: Synthetic Methods and Chemical Compositions, Silicone Surfactants, in Silicone Surfactants, R. M. Hill(ed.), p.49-63, CRC Press (1999).
  45. US Patent US 3898256, Methods for the Preparation of 1,1,3,3-Tetramethyldisiloxane (1975).
  46. J. Deng, 1,1,3,3-Tetramethyldisiloxane, Synlett Spotlight 364,11(2), 2102-2103 (2011).
  47. A, J. O'Lenick Jr., Silicones for Personal Care, 2nd ed,, Allured Publishing Corporation (2008).
  48. J. Acker and K. Bohmhammel, Thermodynamic Assessment of the Copper Catalyed Direct Synthesis of Methylchorosilanes, J. Organomet. Chem., 693, 2483-2493 (2008).
  49. R. Wagner, L. Richer, Y.Wu, J. Weissmuller, J. Reiners, E. Hengge, A. Kleewein and K. Hassier, Silicon-Modified Carbohydrate Surfactant V, Appl. Organomet, Chem., 11, 645-657 (1997).<645::AID-AOC600>3.0.CO;2-0
  50. H. Maki, S. Saeki, I. Iked and S. Komori, Synthesis and Properties of Surfactants Containing Organometals IV. Organo Silicones, J. AM. Oil Chem. Soc., 46, 635-638 (1969).
  51. US Patent US 7507775 B2, Hydrolysis Resistant Organomodified Disiloxane Surfactants (2009).
  52. US Patent US 8008231 B2, Extreme Environment Surfactant Compositions Comprising Hydrolysis Resistant Organomodified Disiloxane Surfactants (2011).
  53. US Patent US 8183317 B2, Coating Compositions Comprising Hydrolysis Resistant Organomodified Disiloxane Surfactants (2012).
  54. C. Racles and T. Hamaide, Synthesis and Charaterization of Water Soluble Saccaride Functionalized Polysiloxanes and Their Use as Polymer Surfactants for the Stabilization of Polycaprolactone Nanoparticles. Macromol. Chem. Phys., 206, 1757-1768 (2005).
  55. C. Racles and V. Cpzan, Synthesis of Glucose-Modified Siloxanes by a Simplified Procedure, Soft Materials, 10(4), 413-425 (2012).
  56. C. Racles, Siloxanes-based Surfactants Containing Tromethamol Units, Soft Materials, 8(3), 263-273 (2010).
  57. C. Rales, T. Hamaide and A. Loanid, Siloxane Surfactants in Polymer Nanoparticles formulation, Appl. Organomet. Chem., 20, 235-245 (2006).
  58. J. Petroff and S. A. Snow, Silicone Surfactants, in Silicone Surface Science, M. J. Owen and P. R. Dvornic (ed.), p.243-280 (2012)