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OKOUNKOV BODIES AND ZARISKI DECOMPOSITIONS

ON SURFACES

Sung Rak Choi, Jinhyung Park, and Joonyeong Won

Abstract. The purpose of this paper is to investigate the close relation

between Okounkov bodies and Zariski decompositions of pseudoeffective
divisors on smooth projective surfaces. Firstly, we completely determine

the limiting Okounkov bodies on such surfaces, and give applications to
Nakayama constants and Seshadri constants. Secondly, we study how the

shapes of Okounkov bodies change as we vary the divisors in the big cone.

1. Introduction

To a big divisor D on a variety, one can associate a convex body ∆Y•(D) with
respect to an admissible flag Y• called the Okounkov body. Inspired by the works
of Okounkov in [14], [15], Lazarsfeld-Mustaţă ([10]) and Kaveh-Khovanskii ([6])
initiated the systematic study of the Okounkov bodies of big divisors. In [3],
two natural ways to associate convex bodies to a pseudoeffective divisor D
with respect to an admissible flag Y• were introduced. They are called the
limiting Okounkov body ∆lim

Y•
(D) and the valuative Okounkov body ∆val

Y•
(D). It

was proved that some of the fundamental properties of divisors are encoded
in these convex bodies. We refer to Section 3 for the definitions and basic
properties of the Okounkov bodies.

The study on Okounkov bodies follows a simple philosophy that the structure
of the Okounkov bodies should tell us the information of the divisors. Thus
determining the shapes of the Okounkov bodies is an important task. Even in
the surface case, there are still many questions that await to be answered.

The purpose of this paper is twofold. First, we completely determine the
limiting and valuative Okounkov bodies of pseudoeffective divisors with respect
to an arbitrary admissible flag on surfaces using the Zariski decompositions.
As consequences, we show that the geometric properties of the given divisor
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and the admissible flag are reflected in the Okounkov bodies. Then, we try
to find a chamber decomposition of the big cone such that the shape of the
Okounkov bodies associated to the divisors in each chamber is constant.

Throughout the paper, by a surface S, we mean a smooth projective surface
defined over an algebraically closed field of characteristic zero. When D is a
big divisor on a surface, [8, Theorem B] completely characterize the Okounkov
body of D. Our first main result is an extension of [8, Theorem B] to the
pseudoeffective case.

Theorem 1.1 (Theorem 4.12 and Theorem 4.16). Let D be a non-big pseu-
doeffective divisor on a smooth projective surface S, and D = P + N be the
Zariski decomposition. Fix an admissible flag C• : {x} ⊆ C ⊆ S. Then

∆lim
C• (D) = ∆lim

C• (P ) + (multC N, ordx((N − (multC N)C)|C)),

and ∆lim
C•

(P ) is given as follows:

(1) Suppose that P.C > 0. Then C is a positive volume subvariety of D and
κν(D) = 1. Furthermore, we have

∆lim
C• (P ) = {(0, x2) | 0 ≤ x2 ≤ P.C}.

Hence, dim(∆lim
C•

(D)) = 1 and volR1(∆lim
C•

(D)) = vol+S|C(D) = P.C.

(2) Suppose that P.C = 0. Let µ := µ(D;C) be the Nakayama constant of
D along C. If µ > 0, then κmax(D) ≥ 0, and we can write P ≡ µC+N ′

for some effective divisor N ′. In this case, we have

∆lim
C•

(P ) = {(x1, x2) | 0 ≤ x1 ≤ µ, x2 = ordx(N
′|C)

µ x1}

Furthermore, dim(∆lim
C•

(D)) = 0 if µ = 0 and dim(∆lim
C•

(D)) = 1 =
κν(D) if µ > 0.

0

Case (1)

x2

x1 0

Case (2)

x2

x1

∆lim
C•

(P )

P.C = vol+S|C(P ) ∆lim
C•

(P )

(µ(D;C), ordx(N ′|C))

In particular, if D is a Q-divisor, then the limiting Okounkov body ∆lim
C•

(D) is a

line segment in R2
≥0 with a nonnegative rational slope with rational end points.

Conversely, for any nonnegative rational number r ∈ Q≥0, there exists a smooth
projective surface S, a pseudoeffective Q-divisor D on S, and an admissible flag
C• such that the limiting Okounkov body ∆lim

C•
(D) has a slope r.

All the necessary notions are recalled in Sections 2, 3, and 4. To prove
Theorem 1.1, we study basic properties of Nakayama constants, Zariski de-
compositions, and asymptotic base loci in Section 4. Note that all the cases
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in Theorem 1.1 do occur (see Example 4.15). As applications, we determine
the infinitesimal limiting Okounkov body (Corollary 4.19), and compute the
Seshadri constant via the Okounkov body (Theorem 4.20).

We also study an analogous statement to Theorem 1.1 for the valuative
Okounkov body ∆val

C•
(D) of an effective divisor D with respect to any admissible

flag C• on a surface S (see Theorem 4.18).
Next, we study how the shapes of Okounkov bodies change as we vary the

divisors. The following is the second main result of this paper.

Theorem 1.2 (Theorem 5.5). Let S be a smooth projective surface such that
Eff(X) is rational polyhedral, and fix an admissible flag C• : {x} ⊆ C ⊆ S
where C is a general member of the linear system of a very ample divisor on
S and x is a general point in C. Then the limiting Okounkov bodies ∆lim

C•
(Di)

for all Di in a given Minkowski chamber M are all similar.

See Section 2 for the brief review on the decomposition of Big(S) into the
stability chambers SC and Section 5 for basic definitions of convex geometry.

The paper is organized as follows. We start in Section 2 by recalling basic
notions and properties of divisors. Section 3 reviews the construction of the
Okounkov body as in [10] and [6], and presents the main results of [3] on the
limiting and valuative Okounkov bodies. In Section 4, we show Theorem 1.1
and give some applications to Nakayama constants and Seshadri constants.
Section 5 is devoted to proving Theorem 1.2.

Acknowledgement. We would like to thank the referee for helpful suggestions
and comments.

2. Preliminaries

Throughout the paper, S denotes a smooth projective surface defined over an
algebraically closed field of characteristic zero and D denotes a pseudoeffective
R-divisor on S unless otherwise stated. In this section, we briefly recall basic
notions and properties which we need later on.

2.1. Asymptotic base locus

When D is a Q-divisor, we define the stable base locus of D as

SB(D) :=
⋂
m

Bs(mD),

where the intersection is taken over all positive integers m such that mD are
Z-divisors, and Bs(mD) denotes the base locus of the linear system |mD|. The
augmented base locus of D is defined as

B+(D) :=
⋂
A

SB(D −A),
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where the intersection is taken over all ample divisors A such that D − A are
Q-divisors. The restricted base locus of D is defined as

B−(D) :=
⋃
A

SB(D +A),

where the union is taken over all ample divisors A such that D + A are Q-
divisors. We have B−(D) ⊆ SB(D) ⊆ B+(D) for a Q-divisor D. One can
check that a divisor D is ample (or nef) if and only if B+(D) = ∅ (respectively,
B−(D) = ∅). The asymptotic base loci B+(D) and B−(D) depend only on the
numerical class of D. For more details, see [4], [5].

2.2. Volume of a divisor

When D is a Q-divisor, the volume of D is defined as

volS(D) := lim sup
m→∞

h0(S,OS(mD))

m2/2!
.

The volume volS(D) depends only on the numerical class of D. Furthermore,
this function uniquely extends to a continuous function

volS : Big(S)→ R.

Note that if D is not big (i.e., S = B+(D)), then volS(D) = 0. For more
details, see [9].

Let V be a proper subvariety of S such that V 6⊆ B+(D). If dimV = 1,
then the restricted volume of D along V is defined as

volS|V (D) := lim sup
m→∞

h0(S|V,mD)

m
,

where h0(S|V,mD) is the dimension of the image of the natural restriction map
ϕ : H0(S,OS(D)) → H0(V,OV (D)) ([5, Definition 2.1]). If dimV = 0, then
we simply let volS|V (D) = 1. The restricted volume volX|V (D) depends only
on the numerical class of D. Furthermore, this function uniquely extends to a
continuous function

volS|V : BigV (S)→ R,
where BigV (S) is the set of all R-divisor classes ξ such that V is not properly
contained in any irreducible component of B+(ξ). By [5, Theorem 5.2], if V
is an irreducible component of B+(D), then volS|V (D) = 0. For more details,
see [5].

Now let V ⊆ S be a subvariety such that V 6⊆ B−(D). For an ample divisor
A on S, we define the augmented restricted volume of D along V as

vol+S|V (D) := lim
ε→0+

volS|V (D + εA).

The definition is independent of the choice of A. As with volS and volS|V , one

can check that the augmented restricted volume vol+S|V (D) depends only on

the numerical class of D. By the continuity of the function volS|V , we see that
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vol+S|V (D) coincides with volS|V (D) for D ∈ BigV (S). For D ∈ BigV (S), the

following inequalities hold by definition:

volS|V (D) ≤ vol+S|V (D) ≤ volV (D|V ).

See [3] for more properties of vol+S|V .

2.3. Iitaka dimension

Let N(D) = {m ∈ Z>0| |bmDc| 6= ∅}. For m ∈ N(D), let ΦmD : S 99K
Pdim |bmDc| be the rational map defined by the linear system |bmDc|. We
define the Iitaka dimension of D as the following value

κ(D) :=

{
max{dim Im(ΦmD) | m ∈ N(D)} if N(D) 6= ∅
−∞ if N(D) = ∅.

Note that the Iitaka dimension κ(D) depends on the linear equivalence class
of [D] ∈ Pic(S) ⊗ R. We also define the maximal Iitaka dimension of D as
follows:

κmax(D) := max{κ(D′) | D ≡ D′}.
By definition, κmax(D) depends only on the numerical class [D] ∈ N1(X)R.

Fix a sufficiently ample Z-divisor A on S. We define the numerical Iitaka
dimension of D as the nonnegative integer

κν(D) := max

{
k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

h0(S,OS(bmDc+A))

mk
> 0

}
if h0(S,OS(bmDc+A)) 6= ∅ for infinitely many m > 0 and we let κν(D) := −∞
otherwise. Remark that our κν is denoted by κσ in [11] and [13]. The numerical
Iitaka dimension κν(D) depends only on the numerical class [D] ∈ N1(X)R.
One can easily check that κ(D) ≤ κν(D) holds and the inequality is strict in
general (see [11, Example 6.1]). However, if κν(D) = dimX, then κ(D) =
dimX. See [11] and [13] for detailed properties of κ and κν .

2.4. Zariski decomposition

Let D be a pseudoeffective divisor on S. It is well known that D admits the
unique Zariski decomposition: D = P +N , where the positive part P is nef, the
negative part N =

∑
aiNi is effective, P.Ni = 0 for each irreducible component

Ni, and the intersection matrix (Ni.Nj) is negative definite if N 6= 0. Note
that P is maximal in the sense that if L is a nef divisor with L ≤ D, then
L ≤ P . If D is a Q-divisor, then so are the positive part P and the negative
part N . The following is also well known (cf. [4, Example 1.11]).

Lemma 2.1. Let D = P +N be the Zariski decomposition of a pseudoeffective
divisor D on a surface S. Then B−(D) = Supp(N). If we assume that D is
big, then B+(D) = Null(P ).
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Recall that the null locus Null(P ) of a nef and big divisor P on a surface S
is the union of all irreducible curves C on S with C.P = 0.

We now briefly recall the s-decomposition. For more details, we refer to [16].
Let D be an effective Q-divisor on S. We define

Ns := inf{L | L ∼Q D,L ≥ 0} and Ps := D −Ns.

Then we can check that Ps and Ns are Q-divisors. The expression D = Ps+Ns
is the s-decomposition of D. We note that Ps is the minimal in the sense that
if L is an effective divisor with H0(S,mL) ' H0(S,mPs) for all sufficiently
divisible integers m > 0, then Ps ≤ L.

2.5. Chamber decomposition of the big cone

We recall the chamber decomposition of the big cone Big(S) in the sense of
[1]. Using the Zariski decomposition, we can define the following chambers in
Big(X).

Definition 2.2. Let D be a big divisor on a surface S and D = PD +ND its
Zariski decomposition.

(1) We define the Zariski chamber (associated to a nef divisor P ) as

ΣP := {D ∈ Big(S)| Supp(ND) = Null(P )}.

(2) We define the Stability chamber (associated to a big divisor D) as

SC(D) := {D′ ∈ Big(S)| B+(D) = B+(D′)}.

By [1, Theorem 2.2], whenever Int ΣP ∩ Int SC(D) 6= ∅, we have Int ΣP =
Int SC(D). Thus the chamber decompositions of Big(S) into the Zariski cham-
bers and stability chambers only differ in the boundaries of the chambers; the
two decompositions are essentially the same.

Theorem 2.3 ([1, Main Theorem]). The big cone Big(X) has a locally finite
decomposition into the Zariski chambers ΣP (or equivalently into the stability
chambers SC(D) by the above remark) that are locally rational polyhedral.

Remark 2.4. Let D be a big divisor on a surface S and D = PD + ND its
Zariski decomposition.

(1) We note that all the stability chambers SC(D) intersect with the nef
cone Nef(X) since B+(D) = Null(PD) = B+(PD). However, a Zariski
chamber ΣP can be disjoint from the nef cone Nef(X) as can be checked
in the example of [1, Example 3.5].

(2) We will see that the structure of the Okounkov body of D descends to
that of the positive part PD. Thus by (1), to study the structure of
the Okounkov bodies of the divisors in some stability chamber SC(D),
it is actually enough to study the divisors in SC(D) ∩Nef(S). We will
clarify this in Section 5.
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3. Construction and basic properties of Okounkov bodies

In this section, we briefly recall the construction of the Okounkov bodies of
big divisors in [10] and [6], and review the main results of [3]. For simplicity,
we only consider the surface case. As before, let S be a smooth projective
surface defined over an algebraically closed field of characteristic zero. We fix
an admissible flag on S

C• : {x} ⊆ C ⊆ S,
where C is an integral curve and x is a smooth point of C. For an effective
Cartier divisor D on S and a section s ∈ H0(S,OS(D)) \ {0}, we define the
function

ν(s) = νC•(s) := (ν1(s), ν2(s)) ∈ Z2
≥0

as follows. First, let ν1(s) := ordC(s). Using a local equation f for C in S,
we define a section s′1 = s ⊗ f−ν1(s) ∈ H0(S,OS(D − ν1(s)C)). Since s′1 does
not vanish identically along C, its restriction s′1|C defines a nonzero section
s1 := s′1|C ∈ H0(C,OC(D − ν1(s)c)). Now take ν2(s) := ordx(s1). Note that
ν2(s) does not depend on the choice of the local equation f .

3.1. Okounkov bodies of big divisors

Now assume that D is a big divisor on S. The Okounkov body ∆C•(D) of
D with respect to the admissible flag C• is defined as the closure of the convex
hull of νC•(|D|R) in R2

≥0 where we set |D|R := {D′ | D ∼R D
′ ≥ 0}.

Theorem 3.1 ([10, Theorem A]). We have volR2(∆C•(D)) = 1
2 volS(D).

Note that if D is not big, then volS(D) = 0.

3.2. Okounkov bodies of pseudoeffective divisors

When D is only pseudoeffective, there are two natural ways to associate a
lower dimensional convex body to D, which were introduced in [3].

Definition 3.2. (1) When D is effective, i.e., |D|R 6= ∅, the valuative Okounkov
body ∆val

C•
(D) of D with respect to the admissible flag C• is defined as the

closure of the convex hull of νC•(|D|R) in R2
≥0. If D is not effective, we define

∆val
C•

(D) = ∅.
(2) When D is pseudoeffective, the limiting Okounkov body ∆lim

C•
(D) of D

with respect to the admissible flag C• is defined as

∆lim
C• (D) := lim

ε→0+
∆C•(D + εA) =

⋂
ε>0

∆C•(D + εA),

where A is an ample divisor on S. Note that ∆lim
C•

(D) is independent of the

choice of A. If D is not pseudoeffective, we define ∆lim
C•

(D) = ∅.

By definition, it is easy to check that ∆val
C•

(D) ⊆ ∆lim
C•

(D).

Proposition 3.3 ([2, Proposition 3.3 and Lemma 4.8]). We have the following:
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(1) dim ∆val
C•

(D) = κ(D).

(2) κmax(D) ≤ dim ∆lim
C•

(D) ≤ κν(D).

We now present examples for which the both inequalities in Proposition 3.3
(2) are strict.

Example 3.4. We use Mumford’s example ([9, Example 1.5.2]) to show that
dim ∆lim

C•
(D) does not coincide with κmax(D) in general.

There exists a ruled surface S = P(E) such that H := OP(E)(1) is nef,
κmax(H) = 0, and κν(H) = 1. Let F be a fiber. Then the nef cone and the
pseudoeffective cone of S coincide and it is generated by H and F . For any
irreducible curve C on S, we may write C ' aH+bF for some rational numbers
a, b ≥ 0. We fix an admissible flag

C• : {x} ⊆ C ⊆ S,

where x is any smooth point on C. If b = 0, then a > 0 and using Theorem
1.1, we obtain

∆lim
C• (H) =

{
(x1, 0) ∈ R2

∣∣∣∣ 0 ≤ x1 ≤
1

a

}
so that dim ∆lim

C•
(H) = 1. If b > 0, then

∆lim
C• (H) = {(0, x2) ∈ R2 | 0 ≤ x2 ≤ b}

so that dim ∆lim
C•

(H) = 1.

Example 3.5. Here we give an example such that dim ∆lim
C•

(D) < κν(D). Let

S be the surface as in Example 3.4 and π : S̃ → S be the blow-up at any point
y ∈ S with the exceptional divisor E. We fix an admissible flag

C• : {x} ⊆ E ⊆ S̃,

where x is a general point on E. Then using Theorem 1.1, we can easily see
that ∆lim

C•
(π∗H) = {(0, 0)} even though κν(π∗H) = κν(H) = 1.

Actually, ∆lim
C•

(π∗H) is the infinitesimal limiting Okounkov body ∆lim
inf (H)

which we will define below in Definition 3.6. We will show that dim ∆lim
inf (D) =

max{0, κmax(D)} for the surface case (see Corollary 4.19).

Definition 3.6. Let π : S̃ → S be the blow-up at a point y ∈ S with the
exceptional divisor E. We consider an admissible flag

C• : {x} ⊆ E ⊆ S̃,

where x is a point on E. If y ∈ S and x ∈ E are chosen very generally, then
the Okounkov body ∆C•(π

∗D) is called the infinitesimal Okounkov body of D
and we denote it by ∆inf(D). Similarly, if D is a pseudoeffective divisor on S,
then the Okounkov body ∆lim

C•
(π∗D) for the general choices of y ∈ S and x ∈ E

is called the infinitesimal limiting Okounkov body and is denoted by ∆lim
inf (D).
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If D is a big divisor on S and we choose y ∈ S and x ∈ E very generally, then
all ∆C•(π

∗D) coincide by [10, Proposition E]. Similarly, even in the case where
D is pseudoeffective, we can also easily check that ∆lim

C•
(π∗D) all coincide. Thus

the above definitions of ∆inf(D) and ∆lim
inf (D) are well-defined.

In [3], the following two special subvarieties were introduced and studied.

Definition 3.7. Let D be a divisor on a surface S.

(1) For an effective divisor D on S, a smooth subvariety U ⊆ S is called a
Nakayama subvariety of D if κ(D) = dimU and the natural map

H0(S,OS(bmDc))→ H0(U,OU (bmD|Uc))

is injective (or equivalently, H0(S, IU ⊗OS(bmDc)) = 0 where IU is the
ideal sheaf of U in S) for every integer m ≥ 0.

(2) For a pseudoeffective divisor D on S, a subvariety V ⊆ X of dimension
κν(D) such that vol+S|V (D) > 0 and V 6⊆ B−(D) is called a positive

volume subvariety of D.

By definition, U = S is the Nakayama subvariety (or positive volume sub-
variety) of D if and only if D is big. It is proven that any general subvariety
U ⊆ S of dimension κ(D) is a Nakayama subvariety of D. Similarly, any gen-
eral subvariety V ⊆ S of dimension κν(D) is a positive volume subvariety of
D.

In [3], the following were shown:

(1) If an admissible flag C• : {x} ⊆ C ⊆ S contains a Nakayama subvariety

U of D and x is a general point, then ∆val
C•

(D) ⊆ {0}2−κ(D) × Rκ(D)
≥0 so

that we can regard ∆val
C•

(D) ⊆ Rκ(D)
≥0 .

(2) If an admissible flag C• : {x} ⊆ C ⊆ S contains a positive volume

subvariety V of D, then ∆lim
C•

(D) ⊆ {0}2−κν(D)×Rκν(D)
≥0 so that we can

regard ∆lim
C•

(D) ⊆ Rκν(D)
≥0 .

Theorem 3.8 ([3, Theorems A and B]). Let D be a pseudoeffective divisor
on a surface S, and fix an admissible flag C• : {x} ⊆ C ⊆ S. We have the
following:

(1) Suppose that D is effective, the admissible flag C• contains a Nakayama
subvariety U of D, and x is a general point. Then

dim ∆val
C•(D) = κ(D) and volRκ(D)(∆val

C•(D)) = volS|U (D).

(2) Suppose that the admissible flag C• : {x} ⊆ C ⊆ S contains a positive
volume subvariety V of D. Then

dim ∆lim
C• (D) = κν(D) and volRκν (D)(∆lim

C• (D)) = vol+S|V (D).
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4. Limiting Okounkov bodies of pseudoeffective divisors on surfaces

The aim of this section is to give an explicit description of the Okounkov
bodies of pseudoeffective divisors on a smooth surface. We first review the
known properties of the Okounkov bodies of big divisors, and give simple proofs
which also work for the limiting Okounkov bodies of pseudoeffective divisors.
Next, we prove the main results Theorems 4.12 and 4.16, and present some
applications. As before, S denotes a smooth projective surface defined over an
algebraically closed field of characteristic zero.

4.1. Nakayama constant and Zariski decomposition

For a pseudoeffective divisor D on S and a subvariety V of S, we define the
Nakayama constant of D along V as

µ(D;V ) := sup{s ≥ 0 | f∗D − sE is pseudoeffective},

where f : S̃ → S is the blow-up of S at V with the exceptional divisor E. Note

that if V is an integral curve, then we take f = id, S̃ = S and E = V .
The Nakayama constant and Zariski decomposition play an important role

in studying the Okounkov body as in the following theorem.

Theorem 4.1 ([10, Theorem 6.4] and [3, Theorem 4.4]). Let D be a pseudo-
effective divisor on a surface S. Fix an admissible flag C• : {x} ⊆ C ⊆ S. Let
a := multC N where D = P+N is the Zariski decomposition, and µ := µ(D;C).
Consider the divisor Dt := D− tC for a ≤ t ≤ µ. Denote by Dt = Pt +Nt the
Zariski decomposition. Let α(t) := ordx(Nt|C) and β(t) := α(t) + C.Pt. Then
the limiting Okounkov body ∆lim

C•
(D) of D is given by

∆lim
C• (D) = {(x1, x2) | a ≤ x1 ≤ µ and α(x1) ≤ x2 ≤ β(x1)}.

Now we show some basic properties of the Nakayama constant and the
Zariski decomposition on a surface.

Lemma 4.2. Let D be a pseudoeffective divisor on a surface S, and D = P+N
be the Zariski decomposition. For an integral curve C, we have µ(D;C) =
µ(P ;C) + multC N .

Proof. By replacing D by D − (multC N)C, we can assume that C is not
in the support of N . Then we only have to show that µ(D;C) = µ(P ;C).
Note that µ(D;C) ≥ µ(P ;C). Thus it is sufficient to show that if D − tC is
pseudoeffective for some t ≥ 0, then so is P − tC. Let D − tC = Pt + Nt be
the Zariski decomposition. Then

P +N = D = Pt +Nt + tC.

By the maximal property of the positive part of the Zariski decomposition,
we obtain N ≤ Nt + tC. Since C is not an irreducible component of N , the
divisor Nt−N is effective. Then P − tC = Pt + (Nt−N) is pseudoeffective as
desired. �
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The following was first established in [8, Proposition 2.1] for big divisors.

Corollary 4.3. Let D be a pseudoeffective divisor on S with the Zariski de-
composition D = P + N , and C be an integral curve in S. Assume that C is
not an irreducible component of N . For t1 > t2 ≥ 0, assume that D − t1C is
pseudoeffective so that we have the Zariski decompositions D− t1C = Pt1 +Nt1
and D − t2C = Pt2 +Nt2 . Then Nt1 ≥ Nt2 .

Proof. The assertion was already shown in the proof of Lemma 4.2. �

Next, we show the rationality of the Nakayama constant of a non-big pseu-
doeffective divisor.

Lemma 4.4. Let D be a pseudoeffective Q-divisor on a surface S, and D =
P +N be the Zariski decomposition. If D is not big, then µ(D;C) is a rational
number for any integral curve C in S.

Proof. By Lemma 4.2, we have µ(D;C) = µ(P ;C) + multC N . Thus it suffices
to show that µ := µ(P ;C) is a rational number. Let P −µC = Pµ +Nµ be the
Zariski decomposition. Suppose that P.C > 0. By Theorem 4.1, we get

∆lim
C• (P ) ⊇ {(0, x2) | 0 ≤ x2 ≤ P.C},

where C• : {x} ⊆ C ⊆ S and x ∈ C is any point. Since P is not big, it
follows that µ = 0. It remains to consider the case P.C = 0. Then we have
P.Pµ = 0. By the Hodge index theorem, we have Pµ = kP for some k ≥ 0. By
the definition of the Nakayama constant, we get k = 0. Thus P = Nµ + µC.
We can conclude that µ is a rational number. �

Remark 4.5. If D is big, then µ(D;C) is a rational number or satisfies a qua-
dratic equation over Q by [8, Proposition 2.2].

We further study some easy properties of the Zariski decompositions of di-
visors of the form P − tC.

Lemma 4.6. Let D be a pseudoeffective divisor on S with the Zariski decom-
position D = P +N , and C be an integral curve in S. Assume that C is not an
irreducible component of N . For t > 0, assume that D − tC is pseudoeffective
so that we have the Zariski decomposition D − tC = Pt + Nt. Then we have
the following:

(1) C is not a component of Nt.
(2) If E is an integral curve such that P.E = 0, E2 < 0, and E 6= C, then

Pt + (Nt + sE) is the Zariski decomposition for s ≥ 0.

Proof. (1) If C is a component of Nt, then D = Pt + (Nt + tC) is the Zariski
decomposition. However, N 6= Nt + tC, so we get a contradiction.

(2) Note that (P − tC).E ≤ 0. Thus Nt.E ≤ 0, so either E is an irreducible
component of Nt or E does not meet Nt. For the latter case, we have Pt.E =
Nt.E = 0. Thus in any case, we obtain Pt.(Nt + E) = 0 and the intersection
matrix of Nt + sE is negative definite. �
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The following is well known.

Lemma 4.7. Let D be a pseudoeffective divisor on S, and D = P +N be the
Zariski decomposition. Fix an admissible flag C• : {x} ⊆ C ⊆ S. Then we
have

∆lim
C• (D) = ∆lim

C• (P ) + (multC N, ordx((N − (multC N)C)|C)).

Proof. First, consider the case C ⊆ B−(D). Set a := multC N > 0. It is easy
to see that

∆lim
C• (D) = ∆lim

C• (D − aC) + (a, 0).

By replacing D by D − aC, we may only consider the case C 6⊆ B−(D). Then
it is sufficient to show that

(!) ∆lim
C• (D) = ∆lim

C• (P ) + (0, ordx(N |C)).

Fix t > 0 such that P − tC is pseudoeffective. Let P − tC = Pt + Nt be
the Zariski decomposition. By Lemma 4.6, P + N − tC = Pt + (Nt + N) is
the Zariski decomposition. Then the assertion (!) now follows from Theorem
4.1. �

Remark 4.8. We can easily verify that a similar statement of Lemma 4.7 holds
for the valuative Okounkov body ∆val

C•
(D) of an effective divisor D. Let D =

Ps +Ns be the s-decomposition. Then we have

∆val
C•(D) = ∆val

C•(Ps) + (multC Ns, ordx((Ns − (multC Ns)C)|C)).

4.2. Asymptotic base loci via Okounkov bodies

Here we give simpler proofs for the following two theorems. These were first
shown in [7, Theorem A] for big divisors.

Theorem 4.9. Let D be a pseudoeffective divisor on a surface S. Then the
following are equivalent:

(1) x ∈ B−(D).
(2) For every flag C• : {x} ⊆ C ⊆ S, the limiting Okounkov body ∆lim

C•
(D)

does not contain the origin of R2.
(3) For some flag C• : {x} ⊆ C ⊆ S, the limiting Okounkov body ∆lim

C•
(D)

does not contain the origin of R2.

Proof. Let D = P +N be the Zariski decomposition.
(1)⇒ (2): Since ordx(N |C) > 0, the assertion follows from Theorem 4.1.
(2)⇒ (3): It is obvious.
(3) ⇒ (1): By Theorem 4.1, we have either multC N > 0 or ordx(N |C) >

0. In both cases, an irreducible component of N passes through x, so x ∈
B−(D). �

Remark 4.10. We cannot replace ∆lim
C•

(D) by ∆val
C•

(D). For an explicit example,

we consider the blow-up π : S → P2 of P2 at 9 general points on a cubic curve C
in P2. Note that −KS = π−1∗ C is nef and κ(−KS) = 0. Consider an admissible
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flag C• : {x} ⊆ π−1∗ C ⊆ S, where x is any smooth point in π−1∗ C. Then we
can easily see that

∆val
C•(−KS) = {(1, 0)}

which does not contain the origin even though −KS is nef. However, we have

∆lim
C• (−KS) = {(x1, 0) | 0 ≤ x1 ≤ 1}

which contains the origin of R2.

Theorem 4.11. Let D be a pseudoeffective divisor on a surface S. Then the
following are equivalent:

(1) x ∈ B+(D).
(2) For every flag C• : {x} ⊆ C ⊆ S, the limiting Okounkov body ∆lim

C•
(D)

does not contain U ∩ R2
≥0 where U is a small open neighborhood of the

origin of R2.
(3) For some flag C• : {x} ⊆ C ⊆ S, the limiting Okounkov body ∆lim

C•
(D)

does not contain U ∩ R2
≥0 where U is a small open neighborhood of the

origin of R2.

Proof. If D is pseudoeffective but not big, then B+(D) = S and dim ∆lim
C•

(D) <
2 for any flag C•. In this case, there is nothing to prove. Thus we only have to
consider the case where D is big. Let D = P +N be the Zariski decomposition.

(1) ⇒ (2): By considering Theorem 4.9, we can assume that x ∈ B+(D) \
B−(D). By Lemma 4.7, we obtain ∆lim

C•
(D) = ∆lim

C•
(P ). We divide into two

cases. First, consider the case C ⊆ B+(P ) = Null(P ), i.e., P.C = 0. In this
case, ∆lim

C•
(P ) does not meet the x2-axis by Theorem 4.1. More precisely, for

any (0, y) with y > 0, we have (0, y) 6∈ ∆lim
C•

(P ). Now, consider the remaining
case C 6⊆ B+(P ). We can take an integral curve E such that x ∈ E ⊆ B+(P ) =
Null(P ). Note that C 6= E but both C and E contain x. Thus C.E > 0 so that
(P − tC).E < 0 for all t > 0. Since P is big, P − t0C is pseudoeffective for some
t0 > 0. Let P −t0C = Pt0 +Nt0 be the Zariski decomposition. Then Nt0 .E < 0
so that E is an irreducible component of Nt0 . Thus ordx(Nt0 |C) > 0. In view
of Theorem 4.1, ∆lim

C•
(D) does not meet the x1-axis. That is, for any (y, 0) with

y > 0, we have (y, 0) 6∈ ∆lim
C•

(D).
(2)⇒ (3): It is obvious.
(3) ⇒ (1): Suppose that x 6∈ B+(D). For an ample divisor A and a suf-

ficiently small ε > 0, we have B+(D) = B−(D − εA). By Theorem 4.9, the
origin is contained in ∆lim

C•
(D − εA) for any admissible flag C•. Now we have

∆lim
C• (D − εA) + ∆lim

C• (εA) ⊆ ∆lim
C• (D).

Since ∆lim
C•

(εA) contains U ∩ R2
≥0, so does ∆lim

C•
(D). �

4.3. Computing limiting Okounkov bodies

We now prove the main results of this section. When D is a big divisor
on a surface S, Theorem 4.1 and [8, Theorem B] completely characterize the



1690 S. R. CHOI, J. PARK, AND J. WON

Okounkov body ∆C•(D) of D with respect to any admissible flag C•. Our
main results, Theorems 4.12 and 4.16, can be regarded as a natural extension
of [8, Theorem B] to the case of pseudoeffective divisors.

Theorem 4.12. Let D be a non-big pseudoeffective divisor on a surface S, and
D = P + N be the Zariski decomposition. Fix an admissible flag C• : {x} ⊆
C ⊆ S. Then

∆lim
C• (D) = ∆lim

C• (P ) + (multC N, ordx((N − (multC N)C)|C)),

and ∆lim
C•

(P ) is given as follows:

(1) Suppose that P.C > 0. Then C is a positive volume subvariety of D and
κν(D) = 1. Furthermore, we have

∆lim
C• (P ) = {(0, x2) | 0 ≤ x2 ≤ P.C}.

Hence, dim(∆lim
C•

(D)) = 1 and volR1(∆lim
C•

(D)) = vol+S|C(D) = P.C.

(2) Suppose that P.C = 0. Let µ := µ(D;C). If µ > 0, then κmax(D) ≥ 0,
and we can write P ≡ µC + N ′ for some effective divisor N ′. In this
case, we have

∆lim
C•

(P ) = {(x1, x2) | 0 ≤ x1 ≤ µ, x2 = ordx(N
′|C)

µ x1}.

Furthermore, dim(∆lim
C•

(D)) = 0 if µ = 0 and dim(∆lim
C•

(D)) = 1 =
κν(D) if µ > 0.

Proof. By Lemma 4.7, we can assume that D = P . By Theorem 4.9, the origin
of R2 is contained in ∆lim

C•
(D). If P.C > 0, then the assertion immediately

follows from Theorem 3.8 and Theorem 4.1 (see also [3]). It remains to consider
the case P.C = 0. If µ = 0, then ∆lim

C•
(D) is the origin of R2, and there is

nothing to prove. We now suppose that µ > 0. Let P − µC = Pµ + Nµ
be the Zariski decomposition. We claim that Pµ = 0. If this claim holds,
then the remaining assertion is a direct consequence of Theorem 4.1. We have
0 = P.(P −µC) = P.Pµ+P.Nµ. Since P 2 = P.C = 0, it follows that P.Pµ = 0.
By the Hodge index theorem, Pµ = kP for some k ≥ 0. By the definition of
the Nakayama constant, we obtain k = 0, so we are done. �

Remark 4.13. For the case (2) of Theorem 4.12, the volume of the limiting Ok-

ounkov body ∆lim
C•

(D) is
√
µ2 + ordx(N ′|C)2. However, the geometric meaning

is not clear to us.

Remark 4.14. Using Theorem 4.12, one can easily check that vol+S|C(D) =

vol+S|C(P ) = P.C. Thus C is a positive volume subvariety of D if and only if

P.C > 0.

Next examples show that all the cases in Theorem 4.12 do occur.

Example 4.15. (1) By [3], there always exists a positive volume subvariety of
any pseudoeffective divisor, so the first case of Theorem 4.12 does occur.
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(2) We give examples of the second case of Theorem 4.12 with µ = 0. For
any flag C• : {x} ⊆ C ⊆ S, we have ∆lim

C•
(OS) = {(0, 0)}. In this case,

κν(OS) = κ(OS) = 0. On the other hand, Example 3.5 gives an example of
∆lim
C•

(D) = {(0, 0)}, but κν(D) = 1.
(3) Remark 4.10 gives an example of the second case of Theorem 4.12 with

µ > 0 and a horizontal limiting Okounkov body. In this case, note that
κ(−KS) = 0.

(4) For an example of the second case of Theorem 4.12 with µ > 0 and a
limiting Okounkov body with a positive slope, consider a fibration f : S → C
onto a curve C. Assume that there exists a fiber F of f such that we can write

F = pC1 + qC2 + E,

where C1 and C2 are integral curves transversally meeting at a point x and E
is an effective divisor whose support contains x, but does not contain neither
C1 nor C2.

· · · · · ·

x

pC1 qC2

For the existence of such a fibration, see the proof of Theorem 4.16. Consider
the admissible flags C1• : {x} ⊆ C1 ⊆ S and C2• : {x} ⊆ C2 ⊆ S. Then we can
see that

∆lim
C1•

(F ) = {(x1, x2) | 0 ≤ x1 ≤ p, x2 =
q

p
x1} and

∆lim
C2•

(F ) = {(x1, x2) | 0 ≤ x1 ≤ q, x2 =
p

q
x1}.

In this case, note that κ(F ) = 1.

By Lemma 4.4 and Theorem 4.12, the limiting Okounkov body ∆lim
C•

(D) is a

line segment in R2 with a rational slope when D is a Q-divisor. We show that
the converse of this statement also holds.

Theorem 4.16. Let r ∈ Q≥0 be any nonnegative rational number. Then there
exist a smooth projective surface S, a pseudoeffective Q-divisor D on S, and
an admissible flag C• : {x} ⊆ C ⊆ S such that the limiting Okounkov body
∆lim
C•

(D) has a slope r.

Proof. By Example 4.15, we only have to deal with the case r = p
q > 0 with

relatively prime positive integers p and q. It suffices to show the existence of a
fibration f : S → C such that a fiber F of f can be written as

F = pC1 + qC2 + E,
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where C1 and C2 are integral curves transversally meeting at a point x and E
is an effective divisor whose support does not contain neither C1 nor C2. For
this purpose, we first consider P1 × P1 with a fibration P1 × P1 → P1. For any
integer m > 0, by taking a successive blow-ups of P1×P1, we can make one fiber
contain two irreducible components with multiplicities 1 and m transversally
meeting at a point. Suppose that we have one fiber containing two irreducible
components with multiplicities m and n transversally meeting at a point. Then
by taking a successive blow-ups of that surface, we can obtain a fiber containing
two irreducible components with multiplicities m + kn and n for any integer
k > 0 transversally meeting at a point. By considering the Euclidean algorithm
for p and q, we can take a successive blow-ups of P1×P1 such that the resulting
surface has a fiber containing two irreducible components with multiplicities p
and q transversally meeting at a point. �

Remark 4.17. It is shown in [8, Theorem B] that any real polygon satisfying
some conditions in R2

≥0 can be realized as the Okounkov body of a big divisor on
a smooth projective toric surface. The example given in the proof of Theorem
4.16 is also a smooth projective toric surface.

For the valuative Okounkov body ∆val
C•

(D) of an effective divisor D, the
analogous statement to Theorem 4.12 also holds. Since the proof is similar to
that of Theorem 4.12 and Theorem 4.16, we omit it here. Recall that we always
have dim ∆val

C•
(D) = κ(D) by Proposition 3.3(1).

Theorem 4.18. Let D be an effective divisor on a surface S, and D = Ps+Ns
be the s-decomposition. Assume that D is not big. Fix an admissible flag
C• : {x} ⊆ C ⊆ S. Then

∆val
C•(D) = ∆val

C•(Ps) + (multC Ns, ordx((Ns − (multC Ns)C)|C)),

and ∆val
C•

(Ps) is given as follows:

(1) Suppose that Ps.C > 0. Then κ(D) = 1, and we have

∆val
C•(Ps) = {(x1, x2) | 0 ≤ x2 ≤ volS|C(D)}.

(2) Suppose that Ps.C = 0. Let µ := µ(D;C). If µ = 0, then ∆val
C•

(Ps) =
{(0, 0)} and κ(D) = 0. If µ > 0, then κ(D) = 1 and we can write
Ps ∼ µC + N ′ for some effective divisor N ′. In this case, we have
∆val
C•

(Ps) = ∆lim
C•

(Ps).

In particular, if D is a Q-divisor, then the valuative Okounkov body ∆val
C•

(D)

is a line segment in R2
≥0 with a nonnegative rational slope with rational end

points. Conversely, for any nonnegative rational number r ∈ Q≥0, there exists
a smooth projective surface S, an effective Q-divisor D on S, and an admissible
flag C• such that the valuative Okounkov body ∆val

C•
(D) has a slope r.

As the first application of our main results, we can completely understand
the infinitesimal limiting Okounkov body of a pseudoeffective divisor.
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Corollary 4.19. Let D be a non-big pseudoeffective divisor on a surface S.
Let x ∈ S be a general point. Then we have

∆lim
inf (D) = {(x1, 0) | 0 ≤ x1 ≤ µ(D;x)}.

Hence, dim ∆lim
inf (D) = max{0, κmax(D)} and volR1 ∆lim

inf (D) = µ(D;x).

Proof. Let D = P + N be the Zariski decomposition, and f : S̃ → S be
the blow-up at a general point x ∈ S with the exceptional divisor E. Then
f∗D = f∗P + f∗N is the Zariski decomposition. Note that f∗P.E = 0. By the
generality assumption, we may assume that x is not contained in the support
of N . Thus E is not a component of f∗N . By Lemma 4.7, we have ∆lim

inf (D) =
∆lim

inf (P ). Consequently, ∆lim
inf (D) contains the origin of R2 by Theorem 4.9. If

κmax(D) = −∞ or 0, then ∆lim
inf (D) = {(0, 0)}. If κmax(D) = 1, then by the

generality assumption and Theorem 4.12, the assertion follows. �

4.4. Seshadri constant

Finally, we compute the Seshadri constant via the limiting Okounkov body.
For a nef divisor D and a subvariety V , we define the Seshadri constant of D
along V as follows:

ε(D;V ) := sup{s ≥ 0 | f∗D − sE is nef},

where f : S̃ → S is the blow-up of S at V with the exceptional divisor E. Note

that if V is an integral curve, then we take f = id, S̃ = S and E = V . We can
compute the Seshadri constant along an integral curve by using the limiting
Okounkov bodies.

Theorem 4.20. Let D be a nef divisor and C be a smooth curve on S. Then
we have

ε(D;C) = inf
x∈C
{s | (s, 0) 6∈ ∆lim

C• (D)

where C• : {x} ⊆ C ⊆ S is an admissible flag}.

Proof. For 0 ≤ t ≤ µ(D;C), let D−tC = Pt+Nt be the Zariski decomposition.
If Nt = 0 for all 0 ≤ t ≤ µ(D;C), then the assertion is trivial. Thus we now
assume that Ns 6= 0 for some 0 < s ≤ µ(D;C). Note that

ε := ε(D;C) = inf{s | Ns 6= 0}.
We denote by

ε′ := inf
x∈C
{s | (s, 0) 6∈ ∆lim

C• (D) where C• : {x} ⊆ C ⊆ S is an admissible flag}.

For 0 ≤ s ≤ µ(D;C), it is enough to show that (s, 0) 6∈ ∆lim
C•

(D) for some

admissible flag C• : {x} ⊆ C ⊆ S and if and only if Ns 6= 0. If (s, 0) 6∈ ∆lim
C•

(D),
then by Theorem 4.1, ordx(Ns|C) > 0 so that Ns 6= 0. For the converse, we
suppose that Ns 6= 0. By Lemma 4.6(1), C is not a component of Ns. Suppose
that C.Ns = 0, i.e., C does not meet any irreducible component of N . Since
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the intersection matrix of irreducible components of Ns is negative definite,
there is an effective divisor E such that Supp(E) ⊆ Supp(Ns) and Ns.E < 0.
Then we obtain

D.E = (Ps +Ns + sC).E = Ns.E < 0,

which is a contradiction. Thus C.Ns > 0, so C meets Ns at some point x. For
the admissible flag C• : {x} ⊆ C ⊆ S, we get (s, 0) 6∈ ∆lim

C•
(D). Hence we are

done. �

5. Okounkov bodies on chambers

In this section, we study how the shape of the Okounkov body ∆C•(D)
changes as we vary D. We first need to clarify what we mean by saying that
∆lim
C•

(D) and ∆lim
C•

(D′) have the same shape.

Definition 5.1. Let ∆,∆′ ⊆ R2 be convex rational polytopes. We say ∆ and
∆′ are similar and write ∆ ≈ ∆′ if ∆,∆′ have the same number of vertices
{v1, . . . , vm = v0}, {w1, . . . , wm = w0}, and edges {vivi+1}, {wiwi+1}, respec-
tively, that can be labeled in such a way that the rays −−−→vivi+1 and −−−−→wiwi+1 are
parallel for all i.

Two rays
−→
V1,
−→
V2 in R2 emitting from the points O1, O2 respectively are par-

allel if the translated rays
−→
V1 − O1 and

−→
V2 − O2 coincide. Note that a finite

sequence of rays defines a ≈-equivalence class of polytopes in R2.
We define the Minkowski sum of two subsets ∆,∆′ ⊆ R2 as

∆ + ∆′ := {x + x′| x ∈ ∆, x′ ∈ ∆′}.

We say that a convex bodies ∆ is indecomposable if ∆ = ∆1 + ∆2 for convex
bodies ∆1,∆2 implies ∆1 = a1∆ and ∆2 = a2∆ where a1, a2 ≥ 0 and a1+a2 =
1. Note that the line segments and simplices are the only indecomposable
convex rational polytopes in R2.

Lemma 5.2. Let M = {∆1, . . . ,∆m} be a finite set of indecomposable convex
rational polytopes of R2. Then the Minkowski sums

∑m
i=1 ai∆i for all ai > 0

are similar to each other.

Proof. We proceed the induction on m. The assertion is trivial if m = 1.
Assume that m ≥ 2. By the induction hypothesis,

∑m−1
i=1 ai∆i for all ai > 0

are similar to each other. Thus it is sufficient to show that if ∆ and ∆′ are
similar rational convex polytopes and ∆′′ is an indecomposable convex rational
polytope in R2, then ∆ + ∆′′ and ∆′ + ∆′′ are similar. It is easy to check that
the numbers of vertices of ∆ + ∆′′ and ∆′ + ∆′′ are the same. Furthermore,
the Minkowski sum ∆ + ∆′′ (resp. ∆′ + ∆′′) is a convex polytope whose sides
consist of the sides of ∆ and ∆′′ (resp. ∆′ and ∆′′). Thus ∆+∆′′ and ∆′+∆′′

are similar. �
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We now consider the Minkowski decomposition of a divisor. For more details,
we refer to [12]. Let S be a smooth projective surface such that Eff(X) is
rational polyhedral, and fix an admissible flag C• : {x} ⊆ C ⊆ S where C is a
general member of the linear system of a very ample divisor on S and x is a
general point in C. Let D be a pseudoeffective divisor on S, and D = P + N
be the Zariski decomposition. By Lemma 4.7, we have ∆lim

C•
(D) = ∆lim

C•
(P ).

Thus it is enough to consider nef divisors. By [12, Main Theorem], there exists
a finite set M (which is called the Minkowski basis with respect to C•) of nef
Q-divisors such that for any nef divisor D, we have

D =
∑
Bi∈M

biBi and ∆lim
C• (D) =

∑
Bi∈M

bi∆
lim
C• (Bi),

where all ∆lim
C•

(P ) are indecomposable. The presentation D =
∑
Bi∈M biBi is

called the Minkowski decomposition of D with respect to M.
We recall the construction of the Minkowski basisM with respect to C• (see

[12, Section 3.1]). First, the generators of extremal rays of Nef(S) belong toM.
Additionally, for each stability chamber SC, we include inM the corresponding
Minkowski basis element B as follows. Let N1, . . . , Nk be integral curves in the
support of B+(D) for any D ∈ SC. Then there is the unique nef divisor

B = C +
∑k
i=1 niNi such that ni ≥ 0 and B.Ni = 0 for all 1 ≤ i ≤ k. We also

briefly explain how to obtain the Minkowski decomposition of a nef divisor D
(see [12, Section 3.2]). If D is not big, then we can write D =

∑
biBi where Bi

are generators of extremal rays of the face of Nef(S) containing D. Since C is
ample, it follows from Theorem 4.12 that ∆lim

C•
(D) is a vertical line segment of

length D.C in the x2-axis and ∆lim
C•

(Bi) are vertical line segments of length Bi.C

in the x2-axis. Thus ∆lim
C•

(D) =
∑
bi∆

lim
C•

(Bi), and hence, D =
∑
biBi is the

Minkowski decomposition. If D is big, then we consider the stability chamber
SC(D). Let BD be the corresponding Minkowski basis element to SC(D), and
bBD := sup{s ≥ 0 | D−sBD is nef}. ThenD−bBDBD is a nef divisor and lies in

a face of the closure SC(D), and ∆lim
C•

(D) = bBD∆lim
C•

(BD)+∆lim
C•

(D−bBDBD).
By continuing this process, we finally obtain the Minkowski decomposition of
D.

Now we define the Minkowski chamber decomposition of the nef cone Nef(X)
with respect to C• following [17]. For a Minkowski basis element B which is
not in any of the extremal rays of Nef(S), we can decompose Nef(S) into the
subcones Mi generated by the extremal rays of Nef(S) and the ray spanned by
B. If B′ is another Minkowski basis element which is not in any of the extremal
rays of Nef(S), then we can decompose further into the subcones generated by
the extremal rays of Mi and the ray spanned by B′. Repeat the process with all
the Minkowski basis elements not in the extremal rays of Nef(S). The interior
of each subcone in the decomposition of Nef(S) we obtain at the end is called
the Minkowski chamber of Nef(S).
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Example 5.3. Let f : S → P2 be the blow-up of two general points in P2 with
exceptional divisors E1, E2, and H := f∗L where L is a line in P2. Note that
the nef cone Nef(S) is generated by H,H −E1, H −E2. If C ∈ |3H −E1−E2|
is a general member, then {H,H −E1, H −E2, 2H −E1 −E2, 3H −E1, 3H −
E2, 3H −E1−E2} is a Minkowski basis with respect to C• and the Minkowski
chamber decomposition is given in the picture on the right below. If C ∈ |H|
is a general member, then {H,H −E1, H −E2, 2H −E1 −E2} is a Minkowski
basis with respect to C• and the Minkowski chamber decomposition is given as
the picture on the right below.

H − E2 2H − E1 − E2 H − E1

3H − E2 3H − E1

H

3H − E1 − E2

H − E2 2H − E1 − E2 H − E1

H

Lemma 5.4. Let S be a smooth projective surface such that Eff(X) is rational
polyhedral, and fix an admissible flag C• : {x} ⊆ C ⊆ S where C is a general
member of the linear system of a very ample divisor on S and x is a general
point in C. For a given Minkowski chamber M , let B1, . . . , Bk be the Minkowski
basis elements in the closure M . Then for any D ∈M , we have the Minkowski

decomposition D =
∑k
i=1 biBi such that all bi > 0.

Proof. The assertion follows from the construction of the Minkowski chambers.
�

The following is the main result of this section.

Theorem 5.5. Let S be a smooth projective surface such that Eff(X) is rational
polyhedral, and fix an admissible flag C• : {x} ⊆ C ⊆ S where C is a general
member of the linear system of a very ample divisor on S and x is a general
point in C. Then the limiting Okounkov bodies ∆lim

C•
(Di) for all Di in a given

Minkowski chamber M are all similar.

Proof. It follows from Lemmas 5.2 and 5.4. �
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