DOI QR코드

DOI QR Code

EFFICIENTLY COMPUTING TORUS CHARTS IN LANDAU-GINZBURG MODELS OF COMPLETE INTERSECTIONS IN GRASSMANNIANS OF PLANES

  • Received : 2016.08.17
  • Accepted : 2016.09.21
  • Published : 2017.09.30

Abstract

In this note, companion to the paper [10], we describe an alternative method for finding Laurent polynomials mirror-dual to complete intersections in Grassmannians of planes, in the sense discussed in [10]. This calculation follows a general method for finding torus charts on Hori-Vafa mirrors to complete intersections in toric varieties, detailed in [5] generalising the method of [8].

References

  1. M. Akhtar, T. Coates, S. Galkin, and A. M. Kasprzyk, Minkowski polynomials and mutations, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17 pp.
  2. V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians, Nuclear Phys. B 514 (1998), no. 3, 640-666. https://doi.org/10.1016/S0550-3213(98)00020-0
  3. V. V. Batyrev, I. Ciocan-Fontanine, B. Kim, and D. van Straten, Mirror symmetry and toric degenerations of partial flag manifolds, Acta Math. 184 (2000), no. 1, 1-39. https://doi.org/10.1007/BF02392780
  4. T. Coates, A. Corti, S. Galkin, V. Golyshev, and A. Kasprzyk, Mirror symmetry and Fano manifolds, European Congress of Mathematics (Krakow, 2-7 July, 2012), November 2013, pp. 285-300.
  5. T. Coates, A. Kasprzyk, and T. Prince, Four-dimensional Fano toric complete intersections, arXiv:1409.5030.
  6. C. Doran and A. Harder, Toric degenerations and Laurent polynomials related to Givental-Landau-Ginzburg models, Canad. J. Math. 68 (2016), no. 4, 784-815. https://doi.org/10.4153/CJM-2015-049-2
  7. L. Katzarkov and V. Przyjalkowski, Landau-Ginzburg models-old and new, Proceedings of the Gokova Geometry-Topology Conference 2011, 97-124, Int. Press, Somerville, MA, 2012.
  8. V. Przyjalkowski, Hori-Vafa mirror models for complete intersections in weighted projective spaces and weak Landau-Ginzburg models, Cent. Eur. J. Math. 9 (2011), no. 5, 972-977. https://doi.org/10.2478/s11533-011-0070-7
  9. V. Przyjalkowski and C. Shramov, On weak Landau{Ginzburg models for complete intersections in Grassmannians, Russian Math. Surveys 69 (2014), no. 6, 1129-1131. https://doi.org/10.1070/RM2014v069n06ABEH004931
  10. V. Przyjalkowski and C. Shramov, Laurent phenomenon for Landau-Ginzburg models of complete intersections in Grassmannians of planes, arxiv:1409.3729, 2014. https://doi.org/10.4134/BKMS.B160678
  11. V. Przyjalkowski and C. Shramov, Laurent phenomenon for Landau{Ginzburg models of complete intersections in Grassmannians, Proc. Steklov Inst. Math. 290 (2015), no. 1, 91-102 https://doi.org/10.1134/S0081543815060097