DOI QR코드

DOI QR Code

INTEGRAL CHOW MOTIVES OF THREEFOLDS WITH K-MOTIVES OF UNIT TYPE

  • Received : 2016.09.19
  • Accepted : 2017.02.24
  • Published : 2017.09.30

Abstract

We prove that if a smooth projective algebraic variety of dimension less or equal to three has a unit type integral K-motive, then its integral Chow motive is of Lefschetz type. As a consequence, the integral Chow motive is of Lefschetz type for a smooth projective variety of dimension less or equal to three that admits a full exceptional collection.

Acknowledgement

Supported by : RSF

References

  1. M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, Vol. 100, Springer-Verlag, Berlin-New York, 1969.
  2. M. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, pp. 7-38, American Mathematical Society, Providence, R.I., 1961.
  3. M. Atiyah and F. Hirzebruch, The Riemann-Roch theorem for analytic embeddings, Topology 1 (1962), 151-166. https://doi.org/10.1016/0040-9383(65)90023-6
  4. A. A. Beilinson, Coherent sheaves on ${\mathbb{P}}^n$ and problems of linear algebra, Funct. Anal. Appl. 12 (1978), no. 3, 66-67.
  5. M. Bernardara and G. Tabuada, Relations between the Chow motive and the noncommutative motive of a smooth projective variety, J. Pure Appl. Algebra 219 (2015), no. 11, 5068-5077. https://doi.org/10.1016/j.jpaa.2015.05.002
  6. P. Berthelot, A. Grothendieck, and L. Illusie, Theorie des intersections et theoreme de Riemann-Roch, Seminaire de Geometrie Algebrique du Bois-Marie 1966-1967 (SGA 6), Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971.
  7. S. Bloch and A. Ogus, Gersten's conjecture and the homology of schemes, Ann. Sci. Ecole Norm. Sup. (4) 7 (1974), no. 2, 181-201. https://doi.org/10.24033/asens.1266
  8. K. S. Brown and S. M. Gersten, Algebraic K-theory as generalized sheaf cohomology, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 266-292, Lecture Notes in Mathematics, Vol. 341, Springer, Berlin, 1973.
  9. J.-L. Colliot-Thelene, Birational invariants, purity and the Gersten conjecture, Proc. Sympos. Pure Math., Vol. 58, Part I, pp. 1-64, American Mathematical Society, Providence, R.I., 1995.
  10. W. G. Dwyer and E. M. Frienlander, Algebraic and etale K-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247-280. https://doi.org/10.1090/S0002-9947-1985-0805962-2
  11. A. V. Fonarev, On the Kuznetsov{Polishchuk conjecture, Proc. Steklov Inst. Math. 290 (2015), no. 1, 11-25. https://doi.org/10.1134/S0081543815060024
  12. E. Friedlander, Etale K-theory. I. Connections with etale cohomology and algebraic vector bundles, Invent. Math. 60 (1980), no. 2, 105-134. https://doi.org/10.1007/BF01405150
  13. E. Friedlander, Etale K-theory. II. Connections with algebraic K-theory, Ann. Sci. Ecole Norm. Sup. (4) 15 (1982), no. 2, 231-256. https://doi.org/10.24033/asens.1427
  14. W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 2, Springer-Verlag, Berlin, 1984.
  15. S. Galkin, L. Katzarkov, A. Mellit, and E. Shinder, Minifolds and phantoms, Adv. Math. 278 (2015), 238-253. https://doi.org/10.1016/j.aim.2015.03.001
  16. T. Geisser, Motivic cohomology, K-theory and topological cyclic homology, Handbook of K-theory. Vol. 1, 2, 193-234, Springer, Berlin, 2005.
  17. H. Gillet, K-theory and intersection theory, Handbook of K-theory. Vol. 1, 2, 235-293, Springer, Berlin, 2005.
  18. S. Gorchinskiy and V. Guletskii, Motives and representability of algebraic cycles on threefolds over a field, J. Algebraic Geom. 21 (2012), no. 2, 347-373. https://doi.org/10.1090/S1056-3911-2011-00548-1
  19. S. Gorchinskiy and D. Orlov, Geometric phantom categories, Publ. Math. Inst. Hautes Etudes Sci. 117 (2013), 329-349. https://doi.org/10.1007/s10240-013-0050-5
  20. J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, 178 pp.
  21. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479-508. https://doi.org/10.1007/BF01393744
  22. A. Kuznetsov, On Kuchle varieties with Picard number greater than 1, Izv. Math. 79 (2015), no. 4, 698-709. https://doi.org/10.1070/IM2015v079n04ABEH002758
  23. A. Kuznetsov, Kuchle fivefolds of type c5, Math. Z. 284 (2016), no. 3, 1245-1278. https://doi.org/10.1007/s00209-016-1707-9
  24. A. Kuznetsov, Exceptional collections in surface-like categories, Mat. Sb. 208 (2017), no. 9, DOI:10.1070/SM8917. https://doi.org/10.1070/SM8917
  25. A. Kuznetsov and A. Polishchuk, Exceptional collections on isotropic Grassmannians, J. Eur. Math. Soc. 18 (2016), no. 3, 507-574. https://doi.org/10.4171/JEMS/596
  26. Ju. I. Manin, Correspondences, motifs and monoidal transformations, Mat. Sb. 6 (1968), no. 4, 475-507.
  27. M. Marcolli and G. Tabuada, From exceptional collections to motivic decompositions via noncommutative motives, J. Reine Angew. Math. 701 (2015), 153-167.
  28. A. S. Merkurjev and A. A. Suslin, K-cohomology of Severi{Brauer varieties and the norm residue homomorphism, Math. USSR-Izvestiya 21 (1983), no. 2, 307-340. https://doi.org/10.1070/IM1983v021n02ABEH001793
  29. J. S. Milne, Etale cohomology, Princeton Mathematical Series, 33, Princeton University Press, Princeton, N.J., 1980.
  30. D. O. Orlov, Derived categories of coherent sheaves and motives, Russian Math. Surveys 60 (2005), no. 6, 1242-1244. https://doi.org/10.1070/RM2005v060n06ABEH004292
  31. D. O. Orlov, Geometric realizations of quiver algebras, Proc. Steklov Inst. Math. 290 (2015), no. 1, 70-83. https://doi.org/10.1134/S0081543815060073
  32. D. O. Orlov, Smooth and proper noncommutative schemes and gluing of DG categories, Adv. Math. 302 (2016), 59-105. https://doi.org/10.1016/j.aim.2016.07.014
  33. I. A. Panin, On the algebraic K-theory of twisted flag varieties, K-Theory 8 (1994), no. 6, 541-585. https://doi.org/10.1007/BF00961020
  34. M. Perling, Combinatorial aspects of exceptional sequences on (rational) surfaces, preprint, arXiv:1311.7349.
  35. D. Quillen, Algebraic K-theory I, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85-147, Lecture Notes in Mathematics, Vol. 341, Springer, Berlin 1973.
  36. C. Soule, K-theorie des anneaux d'entiers de corps de nombres et cohomologie etale, Invent. Math. 55 (1979), no. 3, 251-295. https://doi.org/10.1007/BF01406843
  37. G. Tabuada, Chow motives versus noncommutative motives, J. Noncommut. Geom. 7 (2013), no. 3, 767-786. https://doi.org/10.4171/JNCG/134
  38. R. Thomason, Riemann-Roch for algebraic versus topological K-theory, J. Pure Appl. Algebra, 27 (1983), no. 1, 87-109. https://doi.org/10.1016/0022-4049(83)90032-4
  39. R. Thomason, Algebraic K-theory and etale cohomology, Ann. Sci. Ecole Norm. Sup. (4) 18 (1985), no. 3, 437-552. https://doi.org/10.24033/asens.1495
  40. R. Thomason, Lefschetz-Riemann-Roch theorem and coherent trace formula, Invent. Math. 85 (1986), no. 3, 515-543. https://doi.org/10.1007/BF01390328
  41. C. Vial, Exceptional collections, and the Neron-Severi lattice for surfaces, Adv. Math. 305 (2017), 895-934. https://doi.org/10.1016/j.aim.2016.10.012

Cited by

  1. Exceptional collections in surface-like categories vol.208, pp.9, 2017, https://doi.org/10.1070/SM8917