DOI QR코드

DOI QR Code

SENSITIVITY ANALYSIS OF A SHAPE CONTROL PROBLEM FOR THE NAVIER-STOKES EQUATIONS

  • Kim, Hongchul (Department of Mathematics Gangneung-Wonju National University)
  • Received : 2017.08.08
  • Accepted : 2017.09.21
  • Published : 2017.09.30

Abstract

We deal with a sensitivity analysis of an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. By using the material derivative method and adjoint variables for a shape sensitivity analysis, we derive the shape gradient of the design functional for the model problem.

Acknowledgement

Supported by : Gangneung-Wonju National University

References

  1. I. Babuska, The finite element method with Lagrange multipliers, Numer. Math., 20 (1973), 179-192. https://doi.org/10.1007/BF01436561
  2. L. Cattabriga, Su un Problema al Contorno Relative al Sistema di Equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340.
  3. J. Cea, Conception optimale ou identification de formes, calcul rapide de la derivee directionelle de la fonction cout, Math. Model. Numer. Anal., 20 (1986), 371-402. https://doi.org/10.1051/m2an/1986200303711
  4. R. Correa and A. Seeger, Directional derivatives of a minimax function, Non-linear Analysis, Theory, Methods and Applications, 9 (1985), 13-22. https://doi.org/10.1016/0362-546X(85)90049-5
  5. M. Delfour and J. Zolesio, Differentiability of a minmax and application to optimal control and design problems. Part I, in Control Problems for Systems Described as Partial Differential Equations and Applications, I. Lasiecka and R. Triggiani (Eds.), Springer-Verlag, New York, 204-219, 1987.
  6. M. Delfour and J. Zolesio, Differentiability of a minmax and application to optimal control and design problems. Part II, in Control Problems for Systems Described as Partial Differential Equations and Applications, I. Lasiecka and R. Triggiani (Eds.), Springer-Verlag, New York, 220-229, 1987.
  7. M. Delfour and J. Zolesio, Shape sensitivity analysis via minmax differentiability, SIAM J. Control and Optim., 26 (1988), 834-862. https://doi.org/10.1137/0326048
  8. M. Delfour and J. Zolesio, Anatomy of the shape Hessian, Ann. Matematica pura appl., IV (1991), 315-339.
  9. M. Delfour and J. Zolesio, Structure of shape derivatives for non-smooth domains, J. Func. Anal., 104 (1992), 215-339.
  10. V. Demyanov, Differentiability of a minimax function I, USSR Comput. Math. and Math. Phys., 8 (1968), 1-15.
  11. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986.
  12. R. Glowinski and O. Pironneau, Toward the computation of minimum drag profiles in viscous laminar flow, Appl. Math. Model., 1 (1976), 58-66. https://doi.org/10.1016/0307-904X(76)90001-9
  13. M. Gunzburger and L. Hou, Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses, SIAM J. Numer. Anal., 29 (1992), 390-424. https://doi.org/10.1137/0729024
  14. M. Gunzburger, L. Hou and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls, RAIRO Model.Math. Anal. Numer., 25 (1991), 711-748. https://doi.org/10.1051/m2an/1991250607111
  15. M. Gunzburger and Honghul Kim, Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations, SIAM J. Control Optim., 36 (1998), 895-909. https://doi.org/10.1137/S0363012994276123
  16. Hongchul Kim, On the shape derivative in the domain inclusion, Kangweon-Kyungki Math. Jour., 10 (2002), 75-87.
  17. Hongchul Kim, Penalized approach and analysis of an optimal shape control problem for the stationary Naver-Stokes equations, J. Korean Math. Soc., 38 (2001), 1-23.
  18. V. Komkov, Sensitivity analysis in some engineering applications, in Lecture Notes in Math., 1086, V. Komkov (Ed.), Springer-Verlag, Berlin, 1-30, 1984.
  19. O. Ladyzhenskaya, The Mathematical Theory of Incompressible Viscous Flows, Gordon and Breach, New York, 1969.
  20. J. Marti, Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems, Academic Press, London, 1986.
  21. O. Pironneau, On optimal design in fluid mechanics, J. Fluid Mech., 64 (1974), 97-110. https://doi.org/10.1017/S0022112074002023
  22. O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer, Berlin, 1984.
  23. B. Rousselet, Shape Design Sensitivity of a Membrane, J. Optim. Theory and Appl., 40 (1983), 595-623. https://doi.org/10.1007/BF00933973
  24. J. Saut and R. Temam, Generic properties of Navier-Stokes equations: genericity with respect to the boundary values, Indiana Univ. Math. Jour., 29 (1980), 427-446. https://doi.org/10.1512/iumj.1980.29.29031
  25. D. Serre, Equations de Navier-Stokes stationnaires avec donnees peu regulieres, Ann. Sci. Scuola Norm. Sup. Pisa, Ser., IV (1983), 543-559.
  26. J. Simon, Variations with respect to domain for Neumann conditions, in IFAC Control of Distributed Parameter Systems, Los Angeles, CA, 395-399, 1986.
  27. J. Simon, Differentiation on a Lipschitz manifold, in Lecture Notes in Control and Information Sciences 114, A. Bermudez (Ed.), Springer-Verlag, Berlin, 277-283, 1987.
  28. J. Simon, Domain variation for drag in Stokes flow, in Lecture Notes in Control and Information Sciences, 159, X. Li and J. Yang (Eds.), Springer-Verlag, Berlin, 28-42, 1990.
  29. J. Sokolowski and J. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer-Verlag, Berlin, 1992.
  30. R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.
  31. J. Zolesio, The material derivative (or speed ) method for shape optimization, in Optimization of Distributed Parameter Structures, E. Haug and J. Cea (Eds.), Sijthoff and Noordhoff, Alphen aan den Rijn, 1005-1048, 1981.