DOI QR코드

DOI QR Code

지문분류 기술 동향 분석

Technical Trend Analysis of Fingerprint Classification

  • 정혜욱 (성균관대학교 정보통신대학) ;
  • 이승 (성균관대학교 정보통신대학)
  • 투고 : 2017.07.31
  • 심사 : 2017.08.29
  • 발행 : 2017.09.28

초록

대용량 지문 데이터베이스를 사용하는 지문인식 시스템에서 처리 속도와 정확성을 높이기 위해서는 지문을 클래스별로 카테고리화하는 지문분류 기술을 사용해야 한다. 지문분류 방법은 지문 융선으로부터 특징을 추출하고 지문 융선의 흐름과 형상에 따라 정의되어 있는 클래스를 기준으로 학습 및 추론 기법을 이용하여 분류한다. 기존에는 종이에 회전 날인하여 습득된 NIST 데이터베이스를 이용한 연구가 많이 수행되었지만, 지문인식 입력 센서를 이용한 자동화된 시스템이 보편화됨에 따라 FVC에서 공개한 지문 데이터와 같이 센서로부터 입력된 지문 이미지를 이용한 연구가 증가하고 있으며, 최근에는 딥러닝을 이용한 지문분류 방법이 제안되고 있다. 본 논문에서는 지문분류를 위한 특징 추출 및 분류 기술의 동향을 살펴보고 분류성능을 비교한다. 또한 센서 기반 지문 이미지의 다양한 품질을 고려한 지문분류 기술 연구의 필요성에 대하여 정리하고, 딥러닝 기술을 적용한 지문분류 방법을 분석해 봄으로써 지속적으로 사용이 증가되고 있는 대용량 지문 데이터베이스의 분류 기술 연구에 대한 성능향상에 보탬이 되고자 한다.

키워드

생체인식기술;지문분류기술;지문인식시스템;특징추출

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. E. Henry, Classification and Use of Fingerprint, Routledge, London, 1900.
  2. D. Maltoni, D. Maio, A. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition, Springer, 2003.
  3. K. Nilsson and J. Bigun, "Prominent symmetry points as landmarks in fingerprint images for alignment," Proceedings of ICPR, pp.395-398, 2002.
  4. G. Drets and H. Lijenstrom, "Fingerprint sub-classification: a neural network approach," Intelligent biometric techniques in fingerprint and face recognition, pp.109-134, 1999. https://doi.org/10.1016/0031-3203(84)90079-7
  5. M. Kawagoe and A. Tojo, "Fingerprint pattern classification," Pattern Recognition, Vol.17, No.3, pp.295-303, 1984. https://doi.org/10.1016/0031-3203(84)90079-7
  6. C. Park and H. Park, "Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis," Pattern Recognition, Vol.38, No.4, pp.495-503, 2005. https://doi.org/10.1016/j.patcog.2004.08.013
  7. A. Fitz and R. Green, "Fingerprint classification using a hexagonal fast fourier transform," Pattern Recognition, Vol.29, No.10, pp.1587-1597, 1996. https://doi.org/10.1016/0031-3203(96)00018-0
  8. H. Jung and J. Lee, "Noisy and incomplete fingerprint classification using local ridge distribution models," Pattern Recognition, Vol.48, No.2, pp.473-484, 2015. https://doi.org/10.1016/j.patcog.2014.07.030
  9. A. Jain, S. Prabhakarl and L. Hong, "A Multichannel Approach to Fingerprint Classification," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.4, pp.348-359, 1999. https://doi.org/10.1109/34.761265
  10. M. Chong, T. Ngee, L. Jun, and R. Gay, "Geometric framework for fingerprint image classification," Pattern Recognition, Vol.30, No.9, pp.1475-1488, 1997. https://doi.org/10.1016/S0031-3203(96)00178-1
  11. D. Maio and D. Maltoni, "A structural approach to fingerprint classification," Proceeding International Conference on Pattern Recognition, pp.578-585, 1996.
  12. A. Jain and S. Minut, "Hierarchical kernel fitting for fingerprint classification and alignment," Proceeding International Conference on Pattern Recognition, pp.469-473, 2002. https://doi.org/10.1016/S0031-3203(01)00121-2
  13. J. Chang and K. Fan, "A new model for fingerprint classification by ridge distribution sequences," Pattern Recognition, Vol.35, No.6, pp.1209-1223, 2002. https://doi.org/10.1016/S0031-3203(01)00121-2
  14. A. Jain, L. Hong, and R. Bolle, "On-line fingerprint verification," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.19, No.4, pp.302-314, 1997. https://doi.org/10.1109/34.587996
  15. A. Bazen and S. Gerez, "Systematic methods for the computation of the direction fields and singular points of fingerprints," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.7, pp.905-919, 2002. https://doi.org/10.1109/TPAMI.2002.1017618
  16. M. Kass and A. Witkin, "Analyzing Oriented Patterns," Computer Vision Graphics Image Processing, Vol.37, No.3, pp.362-385, 1987. https://doi.org/10.1016/0734-189X(87)90043-0
  17. B. Mehtre, N. Murthy, S. Kapoor, and B. Chatterjee, "Segmentation of fingerprint images using the directional image," Pattern Recognition, Vol.20, No.4, pp.429-435, 1987. https://doi.org/10.1016/0031-3203(87)90069-0
  18. G. Candela, P. Grother, C. Watson, R. Wilkinson, and C. Wilson, "PCASYS-a pattern-level classification automation system for fingerprints," National Institute of Standards and Technology, NISTIR 5647, 1995.
  19. U. Halici and G. Ongun, "Fingerprint classification through self organizing feature maps modified to treat uncertainties," Proceedings of the IEEE, Vol.84, 1996.
  20. W. Shalash and F. Abou-Chadi, "A fingerprint classification technique using multilayer SOM," Proceedings of the Seventeenth National Radio Science Conference, Egypt, 2000.
  21. H. Jung and J. Lee, "Fingerprint classification using the stochastic approach of ridge direction information," Proceedings of the IEEE International Conference, FUZZ-IEEE, 2009. https://doi.org/10.1016/0031-3203(95)00106-9
  22. K. Karu and A. Jain, "Fingerprint classification," Pattern Recognition, Vol.29, No.3, pp.389-404, 1996. https://doi.org/10.1016/0031-3203(95)00106-9
  23. I. Msiza, B. Leke-Betechuoh, F. Nelwamondo, and N. Msimang, "A Fingerprint Pattern Classification Approach Based on the Coordinate Geometry of Singularities," Proceedings of the IEEE International Conference, Systems, Man, and Cybernetic, pp.510-517, 2009. https://doi.org/10.1023/B:JINT.0000034344.58449.fd
  24. H. Nyongesa, S. khayatt, S. Mohamed, and M. Mahmoud, "Fast robust fingerprint feature extraction and classification," Intelligent and Robotic Systems, Vol.40, No.1, pp.103-112, 2004. https://doi.org/10.1023/B:JINT.0000034344.58449.fd
  25. X. Wang, F. Wang, J. Fan, and J. Wang, "Fingerprint classification based on continuous orientation field and singular points," Proceedings of the IEEE International Conference, Intelligent Computing and Intelligent Systems, pp.189-193, 2009.
  26. C. Rao and K. Black, "Type classification of fingerprints: a syntactic approach," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.2, No.3, pp.223-231, 1980. https://doi.org/10.1016/S0031-3203(96)00178-1
  27. M. Chong, T. Ngee, L. Jun, and R. Gay, "Geometric framework for fingerprint image classification," Pattern Recognition, Vol.30, No.9, pp.1475-1488, 1997. https://doi.org/10.1016/S0031-3203(96)00178-1
  28. A. Senior, "A combination fingerprint classifier," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23, No.10, pp.1165-1174, 2001. https://doi.org/10.1109/34.954606
  29. R. Cappelli, A. Lumini, D. Maio, and D. Maltoni, "Fingerprint classification by directional image partitioning," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.21, No.5, pp.402-421, 1999. https://doi.org/10.1109/34.765653
  30. J. Min and S. Cho, "A Robust Fingerprint Classification using SVMs with Adaptive Features," Journal of KISS: Software and Applications, Vol.35, No.1, pp.41-49, 2008. https://doi.org/10.1007/s12555-011-0514-7
  31. H. Jung and J. Lee, "Live-scanned Fingerprint Classification with Markov Models Modified by GA," International Journal of Control, Automation, and Systems, Vol.9, No.5, pp.933-940, 2011. https://doi.org/10.1007/s12555-011-0514-7
  32. L. Liu, C. Huang, and D. Hung, "A directional approach to fingerprint classification," International Journal of Pattern Recognition and Artificial Intelligence, Vol.22, No.2, pp.347-365, 2008. https://doi.org/10.1142/S0218001408006211
  33. B. Cho, J. Kim, J. Bae, I. Bae, and K. Yoo, "Core-based Fingerprint Image Classification," Proceedings of the Pattern Recognition, Vol.2, pp.859-862, 2000.
  34. Z. Ou, H. Guo, and H. Wei, "Fingerprint Classifier Using Embedded Hidden Markov Models," Lecture Notes in Computer Science, Vol.3338, pp.423-438, 2005.
  35. M. Bhuyan, S. Saharia, and D. Bhattacharyya, "An effective method for fingerprint classification," International Arab Journal of e-Technology, Vol.1, No.3, pp.89-97, 2010. https://doi.org/10.1016/j.eswa.2013.07.099
  36. J. Guo, Y. Liu, J. Chang, and J. Lee, "Fingerprint classification based on decision tree from singular points and orientation field," Expert Systems with Applications, Vol.41, No.1, pp.752-764, 2014. https://doi.org/10.1016/j.eswa.2013.07.099
  37. https://www.nist.gov/srd/nist-special-database-4
  38. http://bias.csr.unibo.it/fvc2000/
  39. http://bias.csr.unibo.it/fvc2002/
  40. http://bias.csr.unibo.it/fvc2004/
  41. 정혜욱, 이승, "지문분류 기술의 국내외 연구동향," 한국정보처리학회 2017년 춘계학술발표대회논문집, 제24권, 제1호, 2017.
  42. R. Wang, C. Han, and T. Guo, "A Novel Fingerprint Classification Method Based on Deep Learning," Proceedings of the International Conference on Pattern Recognition (ICPR), pp.931-936, 2016.
  43. M. Daniel, G. Yanis, E. Andreea-Daniela, S. Rares, N. Kamal, and M. Thomas B, "Fast Fingerprint Classification with Deep Neural Network," I2th International Conference on Computer Vision Theory and Applications(VISAPP), 2017.
  44. D. Maltoni, D. Maio, A. Jain, and S. Prabhakar,Handbook of Fingerprint Recognition, Springer,2009.