DOI QR코드

DOI QR Code

Asymmetric Reduction of 3-Ketoproline Ethyl Ester by Modified Borohydrides and Various Vegetables

  • Wibowo, Agustono (Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM)) ;
  • Shaameri, Zurina (Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM)) ;
  • Mohammat, Mohd Fazli (Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM)) ;
  • Hamzah, Ahmad Sazali (Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM))
  • Received : 2017.04.24
  • Accepted : 2017.07.07
  • Published : 2017.10.20

Abstract

Reduction of (${\pm}$)-3-ketoproline ethyl ester (1) by $NaBH_4$ in the presence of $CaCl_2$ and $MgCl_2$ as the chelating agents gave selective products cis-3(R/S)-alcohols, while reduction by $NaBH_4$ alone or chelated with $NiCl_2$ and $AlBr_3$ gave mixtures of cis- and trans-alcohols. The reduction of (${\pm}$)-1 by various vegetables however, gave exclusively the cis-alcohol as the major and trans-alcohol as the minor. On the contrary, reduction of (${\pm}$)-1 by carrot afforded a mixture of cis- and trans-alcohols, in which the trans-alcohol exists as the major product. In addition, we found that this biocatalyst selectively converted S-enantiomer of (${\pm}$)-1 to the cis-alcohol, and R-enantiomer to a mixture of cis- and trans-alcohols with cis-alcohol as the major product. This fact prompted us to use various fresh plant tissues for stereoselective reduction of diverse types of pyrrolidinones, as its stereoselectivity towards racemic mixtures is higher compared to that using chemical reducing agents.

Keywords

Ketoproline;Stereoselective reduction;Vegetable;Sodium borohydride;Metal salt

References

  1. Stocker, B. L.; Dangerfield, E. M.; Win-Mason, A. L.; Haslett, G. W.; Timmer, M. S. M. Eur. J. Org. Chem. 2010, 2010, 1615. https://doi.org/10.1002/ejoc.200901320
  2. Majik, M. S.; Tilveb, S. G. Synthesis 2012, 44, 2673. https://doi.org/10.1055/s-0032-1316744
  3. Robertson, J.; Stevens, K. Nat. Prod. Rep. 2014, 31, 1721. https://doi.org/10.1039/C4NP00055B
  4. Tache, F.; Farca, A.; Medvedovici, A.; David, V., Captopril A2 - Martini, Luciano. In Encyclopedia of Endocrine Diseases, ed.; Elsevier: New York, 2004; pp 447.
  5. Borghi, C.; Bacchelli, S.; Degli Esposti, D. Expert Rev. Cardiovasc. Ther. 2012, 10, 973. https://doi.org/10.1586/erc.12.81
  6. Ahren, B. Expert Opin. Investig. Drugs. 2006, 15, 431. https://doi.org/10.1517/13543784.15.4.431
  7. O'Connor, S. E.; Brown, R. A. Gen. Pharmacol. Vascul. Sys. 1982, 13, 185. https://doi.org/10.1016/0306-3623(82)90088-X
  8. Wang, H.; Zhang, S.; Zhong, J.; Zhang, J.; Luo, Y.; Pengfei, G. J. Int. Med. Res. 2013, 41, 72. https://doi.org/10.1177/0300060513476992
  9. Elliott, P. J.; Ross, J. S. Am. J. Clin. Pathol. 2001, 116, 637. https://doi.org/10.1309/44HW-5YCJ-FLLP-3R56
  10. Gu, W.; Silverman, R. B. J. Org. Chem. 2011, 76, 8287. https://doi.org/10.1021/jo201453x
  11. Potts, B. C.; Lam, K. S. Mar Drugs 2010, 8, 835. https://doi.org/10.3390/md8040835
  12. Thevis, M.; Kohler, M.; Thomas, A.; Maurer, J.; Schlorer, N.; Kamber, M.; Schanzer, W. Anal. Bioanal. Chem. 2008, 391, 251. https://doi.org/10.1007/s00216-008-1882-6
  13. Bassil, N.; Alkaade, S.; Morley, J. E. Ther. Clin. Risk. Manag. 2009, 5, 427.
  14. Aikawa, K.; Miyawaki, T.; Hitaka, T.; Imai, Y. N.; Hara, T.; Miyazaki, J.; Yamaoka, M.; Kusaka, M.; Kanzaki, N.; Tasaka, A.; Shiraishi, M.; Yamamoto, S. Biorg. Med. Chem. 2015, 23, 2568. https://doi.org/10.1016/j.bmc.2015.03.032
  15. Corey, E. J.; Li, W.; Nagamitsu, T. Angew. Chem. Int. Ed. 1998, 37, 1676. https://doi.org/10.1002/(SICI)1521-3773(19980703)37:12<1676::AID-ANIE1676>3.0.CO;2-T
  16. Ostrowski, J.; Kuhns, J. E.; Lupisella, J. A.; Manfredi, M. C.; Beehler, B. C.; Krystek, S. R., Jr.; Bi, Y.; Sun, C.; Seethala, R.; Golla, R.; Sleph, P. G.; Fura, A.; An, Y.; Kish, K. F.; Sack, J. S.; Mookhtiar, K. A.; Grover, G. J.; Hamann, L. G. Endocrinology 2007, 148, 4. https://doi.org/10.1210/en.2006-0843
  17. Schlienger, N.; Lund, B. W.; Pawlas, J.; Badalassi, F.; Bertozzi, F.; Lewinsky, R.; Fejzic, A.; Thygesen, M. B.; Tabatabaei, A.; Bradley, S. R.; Gardell, L. R.; Piu, F.; Olsson, R. J. Med. Chem. 2009, 52, 7186. https://doi.org/10.1021/jm901149c
  18. David, M.; Jozef, G.; Jan, K.; Rafael, D.; Jan, H.; Ondrej, S.; Marek, B.; Kamil, K. Curr. Org. Chem. 2015, 19, 1980. https://doi.org/10.2174/1385272819666150730210044
  19. Corey, E. J.; Li, W. D. Chem. Pharm. Bull. (Tokyo). 1999, 47, 1. https://doi.org/10.1248/cpb.47.1
  20. Brennan, C. J.; Pattenden, G.; Rescourio, G. Tetrahedron Lett. 2003, 44, 8757. https://doi.org/10.1016/j.tetlet.2003.10.022
  21. Porter, E. A.; Wang, X.; Schmitt, M. A.; Gellman, S. H. Org. Lett. 2002, 4, 3317. https://doi.org/10.1021/ol0266370
  22. Cordell, G. A.; Lemos, T. L. G.; Monte, F. J. Q.; de Mattos, M. C. J. Nat. Prod. 2007, 70, 478. https://doi.org/10.1021/np0680634
  23. Mączka, W. K.; Mironowicz, A. Tetrahedron: Asymmetry 2002, 13, 2299. https://doi.org/10.1016/S0957-4166(02)00635-3
  24. Blanchard, N.; van de Weghe, P. Org. Biomol. Chem. 2006, 4, 2348. https://doi.org/10.1039/b605233a
  25. Remuzon, P. Tetrahedron 1996, 52, 13803. https://doi.org/10.1016/0040-4020(96)00822-8
  26. Berkes, D.; Kolarovic, A.; Povazanec, F. Tetrahedron Lett. 2000, 41, 5257. https://doi.org/10.1016/S0040-4039(00)00800-5
  27. Fraga, C. A. M.; Teixeira, L. H. P.; Menezes, C. M. d. S.; Sant'Anna, C. M. R.; Ramos, M. d. C. K. V.; Neto, F. R. d. A.; Barreiro, E. J. Tetrahedron 2004, 60, 2745. https://doi.org/10.1016/j.tet.2004.01.079
  28. Mohammat, M.; Shaameri, Z.; Hamzah, A. Molecules 2009, 14, 250. https://doi.org/10.3390/molecules14010250
  29. Shaameri, Z.; Ali, S. H. S.; Mohamat, M. F.; Yamin, B. M.; Hamzah, A. S. J. Heterocycl. Chem. 2013, 50, 320. https://doi.org/10.1002/jhet.1078
  30. Hamzah, A. S.; Shaameri, Z.; Goksu, S. J. Chem. 2013, 2013, 2.
  31. Mohammat, M. F.; Mansor, N. S.; Shaameri, Z.; Hamzah, A. S. J. Korean Chem. Soc. 2015, 59, 31. https://doi.org/10.5012/jkcs.2015.59.1.31
  32. Mohalid, N.; Hamzah, A. S.; Shaameri, Z. Malay. J. Anal. Sci. 2015, 19, 359.
  33. Shaameri, Z.; Azib, N. A.; Mohamat, M. F.; Hamzah, A. S. J. Heterocycl. Chem. 2016, 53, 1059. https://doi.org/10.1002/jhet.2433
  34. Williams, R. M.; Cao, J.; Tsujishima, H.; Cox, R. J. J. Am. Chem. Soc. 2003, 125, 12172. https://doi.org/10.1021/ja036713+
  35. Brown, H. C.; Krishnamurthy, S. Tetrahedron 1979, 35, 567. https://doi.org/10.1016/0040-4020(79)87003-9
  36. Periasamy, M.; Thirumalaikumar, M. J. Organomet. Chem. 2000, 609, 137. https://doi.org/10.1016/S0022-328X(00)00210-2
  37. Taniguchi, M.; Fujii, H.; Oshima, K.; Utimoto, K. Tetrahedron 1993, 49, 11169. https://doi.org/10.1016/S0040-4020(01)81804-4
  38. Chang, X.; Yang, Z.; Zeng, R.; Yang, G.; Yan, J. Chin. J. Chem. Eng. 2010, 18, 1029. https://doi.org/10.1016/S1004-9541(09)60164-6
  39. Kroutil, W.; Mang, H.; Edegger, K.; Faber, K. Curr. Opin. Chem. Biol. 2004, 8, 120. https://doi.org/10.1016/j.cbpa.2004.02.005
  40. Yadav, J. S.; Reddy, P. T.; Nanda, S.; Rao, A. B. Tetrahedron: Asymmetry 2002, 12, 3381. https://doi.org/10.1016/S0957-4166(02)00024-1
  41. Matsuda, T.; Yamanaka, R.; Nakamura, K. Tetrahedron: Asymmetry 2009, 20, 513. https://doi.org/10.1016/j.tetasy.2008.12.035
  42. Baldassarre, F.; Bertoni, G.; Chiappe, C.; Marioni, F. J. Mol. Catal. B: Enzym. 2000, 11, 55. https://doi.org/10.1016/S1381-1177(00)00189-2
  43. Martins, B. M.; Macedo-Ribeiro, S.; Bresser, J.; Buckel, W.; Messerschmidt, A. FEBS J. 2005, 272, 269.
  44. Utsukihara, T.; Watanabe, S.; Tomiyama, A.; Chai, W.; Horiuchi, C. A. J. Mol. Catal. B: Enzym. 2006, 41, 103. https://doi.org/10.1016/j.molcatb.2006.05.001
  45. Matsuo, K.; Kawabe, S.-i.; Tokuda, Y.; Eguchi, T.; Yamanaka, R.; Nakamura, K. Tetrahedron: Asymmetry 2008, 19, 157. https://doi.org/10.1016/j.tetasy.2007.12.015